Spelling suggestions: "subject:"geophysics -- antarctica"" "subject:"geophysics -- antarctican""
1 |
Geophysical investigations of subglacial lakes Vostok and Concordia, East AntarcticaFilina, Irina, 1974- 28 August 2008 (has links)
The subjects for this study are two subglacial lakes -- Vostok and Concordia -- located in East Antarctica. Lake Vostok is the largest known subglacial lake on Earth. Melting and freezing at the ice-water contact are known to occur in both lakes. These internal processes are important subjects for numerical modeling. The precise knowledge of the lake's bathymetry and the distribution of unconsolidated sediments at the bottom of the lake are required boundary conditions for such modeling. The ultimate goal of this research was to develop 3D bathymetry models and to establish the distribution of unconsolidated sediments for both lakes. Joint interpretation of airborne gravity and seismic data was performed for Lake Vostok, revealing that the lake is hosted by consolidated sedimentary rocks. The modeling shows that Lake Vostok consists of two sub-basins: a larger, deeper one with water thickness exceeding 1000 m in the south and a shallower one with a water thickness of about 250 m in the north. The resulting 3D model has a substantially better correlation with seismic data than two previous models. Lake Concordia appears to be significantly shallower with water thicknesses not exceeding 200 m for all possible host rock densities. Since the lake is relatively shallow, the sediment layer cannot be resolved. A similar pattern of freezing and melting was observed in Lake Concordia and Lake Vostok: the deeper part of the lake lies under thinner ice and is dominated by the freezing of water at the ice bottom, while in the shallower part of the lake the overlying thicker ice melts. The analysis of seismic data in four different locations over Lake Vostok revealed the presence of unconsolidated sediments at the bottom of the lake. The sedimentary layer appears to be thicker (up to 400 m) in the northern basin, while its thickness does not exceed 300 m in the southern one. Four different sedimentation mechanisms were considered to explain how such a thick sedimentary layer was deposited in Lake Vostok under glacial conditions. The estimates show that none of the mechanisms considered is capable of depositing the observed sedimentary layer, revealing the pre-glacial origin of Lake Vostok.
|
2 |
A marine geophysical study of the Wilkes Land rifted continental margin, AntarcticaClose, David Ian January 2005 (has links)
The Wilkes Land margin of East Antarctica, conjugate to the southern Australian margin, is a non-volcanic rifted margin that formed during the Late Cretaceous. During 2000-01 and 2001-02, Geoscience Australia (GA) acquired ~10,000 line km of seismic reflection, magnetic anomaly, and gravity anomaly data, on the Wilkes Land margin. Seismic reflection and sonobuoy refraction data provide the first constraints on sediment thickness and images of the deep crustal structure for the extent of the Wilkes Land margin. Two major post-rift seismic-stratigraphic sequences are recognised, separated by a regionally correlatable unconformity. The unconformity is interpreted as Early- to Middle-Eocene (~50 Ma). This unconformity has previously been interpreted to represent the onset of continent-wide glaciation at ~34 Ma. A major unconformity at the base of post-rift sediments is interpreted as a breakup unconformity, of approximately Turonian (85-90 Ma) age. Timing the onset of seafloor spreading using lineated magnetic anomalies within the Australia-Antarctic Basin (AAB) is extremely difficult due to uncertainties in correlating anomalies to the geomagnetic reversal time scale. Modelling indicates that the anomaly commonly correlated to Chron 34y may, in some cases, be associated with high level intrusions and/or serpentinisation of exhumed upper-mantle peridotites. Process-oriented gravity modelling indicates that the Wilkes Land margin lithosphere is characterised by a relatively high effective elastic thickness (Te). Isostatic anomalies are most effectively reduced for models utilising Te = 30 km. Although the margin is broadly characterised by a high Te, zones of low Te are inferred from modelling. Spectral analysis of isostatic anomalies indicates that the power of the flexural isostatic anomalies is lower than the free air gravity anomalies. The margin does not appear to be segmented, at least in regard to its long-term strength. However, a change in initial, zero-elevation crustal thickness (Tc) is inferred from west to east. A Tc of ~35 km is inferred for western Wilkes Land, whereas eastern Wilkes Land is characterised by Tc = 29 to 31 km. Limited seismic refraction data from the conjugate margin indicates a similar trend from southwest to southeast Australia.
|
3 |
Iceberg-keel ploughmarks on the seafloor of Antarctic continental shelves and the North Falkland Basin : implications for palaeo-glaciologyWise, Matthew Geoffrey January 2018 (has links)
The use of iceberg-keel ploughmarks as proxy indicators of past and present iceberg morphology, keel depth and drift direction has seldom been approached in the southern hemisphere. Using high-resolution multi-beam swath bathymetry of the mid-shelf Pine Island Trough and outermost Weddell Sea shelf regions of Antarctica, detailed analysis of >13,000 iceberg-keel ploughmarks was undertaken. By considering the draft of icebergs calved from Antarctica today, calculated from detailed satellite altimetric datasets by this work, almost all observed ploughmarks were interpreted to be relict features. In Pine Island Trough, ploughmark planform parameters and cross-sections imply calving of a large number of non-tabular icebergs with v-shaped keels from the palaeo-Pine Island-Thwaites ice stream. Geological evidence of ploughmark form and modern water depth distribution indicates calving-margin thicknesses (949 m) and subaerial ice cliff elevations (102 m) equivalent to the theoretical threshold predicted to trigger ice-cliff structural collapse and calving by marine ice-cliff instability (MICI) processes. Thus, ploughmarks provide the first observational evidence of rapid retreat of the palaeo-Pine Island-Thwaites ice stream, driven by MICI processes commencing ~12.3 cal ka BP. On the Weddell Sea shelf, ploughmark morphologies imply considerable variation in palaeo-iceberg shape and size, most likely reflecting calving from multiple source margins. In turn, an absence of grounded ice on the Weddell Sea shelf and a palaeo-oceanographic regime comparable to today are implied at the time of formation. Analysis of a 3D seismic cube of the Sea Lion Field area of the North Falkland Basin reveals iceberg-keel ploughmarks incised into the modern- and palaeo-seafloor, formed by icebergs of varying shape and size that most-likely calved from the Antarctic Ice Sheet during three past glacial periods (estimated ages ~18 - 26.5 ka BP, ~246 ka BP, ~9.8 Ma BP). Despite illustrating the possibility of iceberg drift into the North Falkland Basin today, the relict ploughmark age implies little risk to any seafloor structures in the area, which might be required for hydrocarbon production. By these analyses, the significance of iceberg-keel ploughmarks as indicators of palaeo-glaciology and palaeo-oceanography at the time of formation is emphasised.
|
4 |
Impact of improved basal and surface boundary conditions on the mass balance of the Sr Rondane Mountains glacial system, Dronning Maud Land, AntarcticaCallens, Denis 06 November 2014 (has links)
Mass changes of polar ice sheets have an important societal impact, because they affect global sea level. Estimating the current mass budget of ice sheets is equivalent to determining the balance between the surface mass gain through precipitation and the outflow across the grounding line. In Antarctica, the latter is mainly governed by oceanic processes and outlet glacier dynamics.<p>In this thesis, we assess the mass balance of a part of eastern DronningMaud Land via an input/output method. Input is given by recent surface accumulation estimations of the whole drainage basin. The outflow at the grounding line is determined from the radar data of a recent airborne survey and satellite-based velocities using a flow model of combined plug flow and simple shear. We estimate the regional mass balance in this area to be between 1.88±8.50 and 3.78±3.32 Gt a−1 depending on the surface mass balance (SMB) dataset used. This study also reveals that the plug flow assumption is acceptable at the grounding line of ice streams.<p>The mass balance of drainage basins is governed by the dynamics of their outlet glaciers and more specifically the flow conditions at the grounding line. Thanks to an airborne radar survey we define the bed properties close to the grounding line of the West Ragnhild Glacier (WRG) in the Sør Rondane Mountains. Geometry and reflectivity analyses reveal that the bed of the last 65 km upstream of the grounding line is sediment covered and saturated with water. This setting promotes the dominance of basal motion leading to a change in the flow regime: in the interior flow is governed by internal deformation while its relative importance decreases to become driven by basal sliding.<p>Subsequently we present the results of the reconstruction of the SMB across an ice rise through radar data and inverse modelling. The analysis demonstrates that atmospheric circulation was stable during the last millennium. Ice rises induce an orographic uplift of the atmospheric flow and therefore influence the pattern of the SMB across them, resulting in an asymmetric SMB distribution. Since the geometry of the internal reflection horizons observed in radar data depends on the SMB pattern, the asymmetry observed in radar layers reveals the trajectories of air masses at the time of deposit. We present an original and robust method to quantify this SMB distribution. Combining shallow and deep radar layers, SMB across Derwael Ice Rise is reconstructed. Two methods are employed as a function of the depth of the layers: i.e. the shallow layer approximation for the surface radar layers and an optimization technique based on an ice flow model for the deeper ones. Both methods produce similar results. We identify a difference in SMB magnitude of 2.5 between the flanks and the ice rise divide, as well as a shift of ≈4 km between the SMB maximum and the crest. Across the ice rise, SMB exhibits a very large variability, ranging from 0.3 to 0.9 mw.e. a−1. This anomaly is robust in time.<p>Finally we draw a comprehensive description of the Sør Rondane Mountains sector. The glacial system is close to the equilibrium and seems stable but evidences suggest that it is a fragile equilibrium. The proximity of the open ocean certainly favours the interaction between warm water and the ice shelf cavity conducting to potential important melting. The thinning associated with this melting can detach the ice shelf from pinning points. This will reduce the buttressing from the ice shelf, outlet glaciers will accelerate and mass transfer toward the ocean will increase. Therefore, the future of Antarctic Ice Sheet directly depends on the changes affecting its boundaries and assessing the sensitivity of the ice sheets is essential to quantify and anticipate the future variation of mass balance. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
Page generated in 0.0569 seconds