• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Iterative techniques in linearized free surface flow

Avera, William Edgar 30 April 1981 (has links)
The displacement of the free liquid surface in geothermal and hydrologic reservoirs is an important capacitance factor. An iterative approach to determining the drawdown of the free liquid surface for a single sink region in a homogeneous, isotropic, Darcy-type porous mediums is discussed. The iterative approach involves a stepwise adjustment of the pressure on the reference surface which replaces the time-dependent free surface condition by a fixed plane Dirichlet type condition so that readily available, standard techniques can be applied. Grouping of producing wells into a single analogous well may be used to treat multiple well cases with the iterative approach. An analytic solution for the infinite half space situation is used to compare solutions with the iterative technique. The analytic solution is derived for a point sink within an infinite, homogeneous, isotropic, Darcy-type porous half space. It is obtained by linearizing the free liquid boundary condition provided that the free surface deviates from its equilibrium reference position by only a small slowly undulating displacement h. The flow pressure at the equilibrium surface is then approximated by the hydrostatic pressure for a column of height h. A standard model is designed to be analogous to the analytic solution. Testing the iterative-procedure calculations for this model against the derived analytic solution produces very satisfactory results provided that the numerical grid spacing is adequately chosen for the problem. Calculations of the linear and quadratic terms of the free surface condition indicate that the neglected quadratic terms are in general small, and the approximation is reasonable. / Graduation date: 1981
2

On the stability of quasi-geostrophic waves in a rotating annulus

Warn, Thomas January 1973 (has links)
No description available.
3

On the stability of quasi-geostrophic waves in a rotating annulus

Warn, Thomas January 1973 (has links)
No description available.
4

Effects of a new resistance law in an atmospheric model.

Benoît, Robert. January 1973 (has links)
No description available.
5

Effects of a new resistance law in an atmospheric model.

Benoît, Robert. January 1973 (has links)
No description available.
6

Exploring conceptual geodynamic models : numerical method and application to tectonics and fluid flow

Wijns, Christopher P. January 2005 (has links)
Geodynamic modelling, via computer simulations, offers an easily controllable method for investigating the behaviour of an Earth system and providing feedback to conceptual models of geological evolution. However, most available computer codes have been developed for engineering or hydrological applications, where strains are small and post-failure deformation is not studied. Such codes cannot simultaneously model large deformation and porous fluid flow. To remedy this situation in the face of tectonic modelling, a numerical approach was developed to incorporate porous fluid flow into an existing high-deformation code called Ellipsis. The resulting software, with these twin capabilities, simulates the evolution of highly deformed tectonic regimes where fluid flow is important, such as in mineral provinces. A realistic description of deformation depends on the accurate characterisation of material properties and the laws governing material behaviour. Aside from the development of appropriate physics, it can be a difficult task to find a set of model parameters, including material properties and initial geometries, that can reproduce some conceptual target. In this context, an interactive system for the rapid exploration of model parameter space, and for the evaluation of all model results, replaces the traditional but time-consuming approach of finding a result via trial and error. The visualisation of all solutions in such a search of parameter space, through simple graphical tools, adds a new degree of understanding to the effects of variations in the parameters, the importance of each parameter in controlling a solution, and the degree of coverage of the parameter space. Two final applications of the software code and interactive parameter search illustrate the power of numerical modelling within the feedback loop to field observations. In the first example, vertical rheological contrasts between the upper and lower crust, most easily related to thermal profiles and mineralogy, exert a greater control over the mode of crustal extension than any other parameters. A weak lower crust promotes large fault spacing with high displacements, often overriding initial close fault spacing, to lead eventually to metamorphic core complex formation. In the second case, specifically tied to the history of compressional orogenies in northern Nevada, exploration of model parameters shows that the natural reactivation of early normal faults in the Proterozoic basement, regardless of basement topography or rheological contrasts, would explain the subsequent elevation and gravitationally-induced thrusting of sedimentary layers over the Carlin gold trend, providing pathways and ponding sites for mineral-bearing fluids.

Page generated in 0.0569 seconds