• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Estudio de factibilidad de obtenciòn de hormigones geopolimèricos a partir de desechos minerales

Díaz Sossa, Pedro Manuel January 2012 (has links)
Ingeniero Civil / En este estudio se demuestra la factibilidad técnica de obtener hormigones geopoliméricos haciendo uso de una dosificación experimental. Esta dosificación tiene como componentes fundamentales un material aglomerante, una solución alcalina y áridos. El aglomerante es un material fino de partículas de aspecto amorfo que posee una cantidad importante de óxido de silicio y óxido de aluminio. La solución alcalina es una mezcla de silicato de sodio y una solución altamente concentrada de hidróxido de sodio. Aglomerante y solución alcalina se mezclan formando una pasta a la cual se incorporan áridos de manera de obtener un mortero que llega a desarrollar resistencias a la compresión de 40 [MPa]. La motivación de esta investigación viene dada por el creciente interés en desarrollar materiales de construcción sustentables. La industria de la construcción crece constantemente, este crecimiento involucra un impacto ambiental considerable. Por una parte, al necesitarse un gran volumen de materiales, se explotan muchos recursos naturales vírgenes, y por otro lado, el procesamiento de estos materiales involucra una gran polución de gases de efecto invernadero, en particular, la producción de cemento portland. Para reducir estos efectos se intentó reproducir la tecnología de la geopolimerización haciendo uso de materiales a nivel local, la mayoría de ellos, pasivos ambientales. Como materiales aglomerantes se utilizó ceniza volante de clase F de División Ventanas de AES Gener y relaves de cobre obtenidos en División El Soldado de Anglo American. Como áridos se utilizó hormigón de desecho chancado otorgado por IDIEM, ripios de lixiviación de División El Soldado y polvo de roca. Se confeccionaron y ensayaron a resistencia mecánica probetas RILEM con distintas dosificaciones donde se incluyeron los materiales mencionados. Se estudiaron densidades, curado y desarrollo de resistencias a flexión y a compresión.
2

Utilización de ceniza de central termoeléctrica Ventanas como fuente de aluminosilicatos para la fabricación de hormigón geopolimérico

Loayza Díaz, Natalia Margarita January 2017 (has links)
Ingeniera Civil / La presente investigación estudia la factibilidad de producir hormigón geopolimérico a base de ceniza volante con bajo contenido de calcio proveniente de la central termoeléctrica Ventanas. Se intenta replicar y transferir la experiencia y desarrollo alcanzado para la producción de este material a nivel internacional, particularmente basándose en investigaciones australianas. El trabajo preliminar desarrollado siguiendo las pautas de la práctica australiana dejó no obstante, en evidencia la existencia de incompatibilidades en las materias primas disponibles a nivel industrial en el país (fuente de aluminosilicatos, solución alcalina y agregados). Lo anterior obligó a ajustar la metodología del estudio a las condicionantes impuestas por los materiales, principalmente la ceniza volante, componente básico del geopolímero que presentaba un alto contenido de carbón residual, superior al 20%, determinado mediante el ensayo de pérdida por calcinación. Se debió partir por mejorar el comportamiento de la fuente de aluminosilicatos para lo que se recurrió por una parte a mejorar la ceniza volante disponible mediante tamizado y a recurrir a la incorporación de otras adiciones como escoria de alto horno y microsílice. Por otra parte, se procedió a ajustar experimentalmente las relaciones solución alcalina/fuente de aluminosilicatos, que originalmente era igual a 0,35 aumentándola a 0,65. También se modificó el proporción de áridos en la mezcla. Para estudiar cómo afecta la variación de algunos parámetros en las propiedades de la pasta geopolimérica se fabricaron probetas a escala de laboratorio. Dentro de los parámetros en estudio, se analizó la variación de porcentaje de pérdida por calcinación de la ceniza, la granulometría de los áridos, el contenido de agua extra, entre otros. Resultando en resistencias a compresión de aproximadamente 20 MPa a los 7 días en morteros geopoliméricos a base de ceniza volante que aumentó a 30 MPa con adición de un 30% de escoria de alto horno. Los resultados verifican la potencial utilización del hormigón geopolimérico como un nuevo material en el rubro de la construcción, ya que es una alternativa sustentable que presenta propiedades y resistencias mecánicas similares o mejores que el hormigón convencional. En la industria de los elementos prefabricados este material debido al desarrollo de resistencias tempranas que presenta, tendría significativas ventajas con relación al hormigón convencional, ya que puede ser desmoldado al término del curado térmico y además alcanza su resistencia final a los 7 días. Por otro lado, se propone seguir investigando sobre las tecnologías que se utilizan para mejorar la calidad de la ceniza volante, de modo de conseguir una mayor reducción del contenido de carbón residual y así obtener un significativo mejoramiento de las propiedades mecánicas del material.
3

[en] A STUDY ON THE MIXTURE DESIGN AND MECHANICAL PERFORMANCE OF STRAIN-HARDENING GEOPOLYMER COMPOSITES (SHGC) UNDER EXTREME CONDITIONS / [pt] UM ESTUDO SOBRE A DOSAGEM E O DESEMPENHO MECÂNICO DE COMPÓSITOS GEOPOLIMÉRICOS DO TIPO STRAIN-HARDENING (SHGC) SOB CONDIÇÕES EXTREMAS

ANA CAROLINA CONSTANCIO TRINDADE 04 November 2021 (has links)
[pt] Geopolímeros possuem uma pluralidade química em seu design que permite a obtenção de propriedades variadas dependendo da demanda, tanto em termos de materiais cerâmicos de alta tecnologia quanto no desenvolvimento de soluções construtivas. São obtidos a partir da combinação de precursores alumino silicatos e soluções alcalinas, com diferentes processos de endurecimento, dependendo das condições de cura e equilíbrio químico. No estado endurecido, apresentam um comportamento frágil, sendo geralmente reforçados com fibras e agregados na melhoria do desempenho mecânico. Por serem materiais relativamente novos, é necessário avaliar com precisão sua capacidade em condições usuais e extremas para atender a diversas demandas específicas do mercado. Tais condições incluem solicitações estáticas e dinâmicas, bem como a exposição a altas temperaturas, que são os principais pontos de análise deste estudo. Para isso, diferentes precursores, como metacaulim e cinzas volantes, e soluções alcalinas, à base de sódio e potássio, foram estudados quanto à reologia e ganho de resistência de acordo com o processo de cura utilizado. Esses foram parâmetros fundamentais na seleção de matrizes capazes de incorporar 2 por cento em vol. de fibras curtas de PVA e PE sintéticas. Os compósitos do tipo strain-hardening (SHGC) foram então caracterizados através de ensaios mecânicos típicos, tais como compressão, flexão, tração, arrancamento, em carregamentos estáticos e dinâmicos, e sob exposições regulares e de alta temperatura (até 200 graus C), sendo analisados posteriormente por meio de procedimentos típicos analíticos e de imagem. No geral, a combinação de metacaulim de alta reatividade com soluções alcalinas a base de sódio apresentou melhores performances em SHGC, com e sem a incorporação de agregados, atingindo ganhos de resistência e múltipla fissuração quando reforçado com ambas as fibras curtas de PVA e PE, sendo a última responsável pela maior efetividade mecânica do compósito quando exposto a carregamento quase-estáticos em de impacto. Esse comportamento, no entanto, não se repetiu ao ser exposto a temperaturas elevadas, com maiores reduções na resistência residual devido ao ponto de fusão do PE (150 graus C), em comparação a um maior valor para PVA (240 graus C), sendo então este mais efetivo em aplicações extremas deste tipo. Quando comparado a comportamentos típicos de SHCC, SHGC demonstrou uma maior eficiência tanto mecânica quanto térmica, apresentando resultados inéditos em carregamentos de impacto, gerando assim uma enorme quantidade de aplicações potenciais. / [en] Geopolymers possess a chemical plurality in their design that allow the achievement of varied properties depending on demand, both in terms of high-tech ceramic materials and development of constructive solutions. They are obtained from the combination of aluminosilicate precursors and alkaline solutions, with different hardening processes, depending on the curing conditions and chemical balance. In the hardened state, they present a fragile behavior, being then usually reinforced with fibers and aggregates aiming to improve their mechanical performance. As they are relatively new materials, there is a need to accurately assess their capacity under usual and extreme conditions to meet several specific market demands. Such extreme conditions include static and dynamic loading, as well as exposure to high temperatures, which are the major points of analysis in this study. For this, different precursors, such as metakaolin and fly ash, and alkaline solutions, based on sodium and potassium, were studied regarding rheology in the fresh state, and evolution of strength gain according to the curing process used. These were fundamental parameters in the selection of matrices able to achieve an adequate balance between fluidity and viscosity to incorporate 2 percent by volume of synthetic PVA and PE short fibers. The strain-hardening geopolymer composites (SHGC) were then characterized through typical mechanical tests, such as compression, flexural, tensile, pull-out, in quasi-static and impact loadings, and under regular and high temperature exposures (up to 200 C degrees), being further analyzed through imaging and analytical procedures. In general, high reactivity metakaolin combined with Na-based alkaline solutions demonstrated a superior SHGC performance, with and without aggregate incorporation, reaching stress gains and multiple cracking formation when reinforced with both PVA and PE short fibers, the latter being responsible for greater mechanical efficiency when exposed to quasi-static and impact loading. This behavior, however, was not reiterated when exposed to high temperatures, with higher residual strength reductions due to the melting point of PE (at 150 C degrees), opposed to an increased performance of PVA (240 C degrees), being thus more effective at such extreme application. When compared to typical SHCC behavior, SHGC reached greater efficiency both mechanically and thermally, showing unprecedented results in impact loading, thus demonstrating varied application potential.

Page generated in 0.0319 seconds