Spelling suggestions: "subject:"gerador criptográficamente seguro"" "subject:"gerador cristalograficamente seguro""
1 |
Ataques Quânticos a Geradores de Números Pseudo-Aleatórios. / Quantum Attacks to Pseudo-Random Number Generators.COSTA, Elloá Barreto Guedes da. 01 October 2018 (has links)
Submitted by Johnny Rodrigues (johnnyrodrigues@ufcg.edu.br) on 2018-10-01T16:46:31Z
No. of bitstreams: 1
ELLOÁ BARRETO GUEDES DA COSTA - DISSERTAÇÃO PPGCC 2011..pdf: 1433883 bytes, checksum: fb9fa0561b94ab2b495915f5f377c364 (MD5) / Made available in DSpace on 2018-10-01T16:46:31Z (GMT). No. of bitstreams: 1
ELLOÁ BARRETO GUEDES DA COSTA - DISSERTAÇÃO PPGCC 2011..pdf: 1433883 bytes, checksum: fb9fa0561b94ab2b495915f5f377c364 (MD5)
Previous issue date: 2011-03-25 / Este trabalho apresenta um ataque quântico de comprometimento permanente ao gerador
pseudo-aleatório de Blum-Micali. A segurança deste gerador, classificado como criptograficamente seguro, baseia-se na hipótese de intratabilidade do problema do logaritmo discreto perante a Computação Clássica. O ataque proposto faz uso do algoritmo quântico de busca em conjunto com o algoritmo quântico para o logaritmo discreto para comprometer a imprevisibilidade do gerador, recuperando todas as saídas passadas e futuras do mesmo. O presente trabalho também descreve generalizações deste ataque que o adequam a uma gama mais vasta de geradores, incluindo geradores da Construção de Blum-Micali e geradores com múltiplos predicados difíceis. Tais generalizações também abrangem a realização de ataques em situações adversas, por exemplo, quando o adversário captura bits não consecutivos ou quando há menos bits que o requerido. Comparado à sua contrapartida clássica, o algoritmo quântico proposto nesse trabalho possui um ganho quadrático em relação à recuperação do representante do estado interno do gerador, seguido de um ganho superpolinomial na obtenção dos demais elementos do estado interno. Estes resultados caracterizam ameaças,elaboradas com Computação Quântica, contra a segurança de geradores utilizados em diversas aplicações criptográficas. / This dissertation presents a quantum permanent compromise attack to the Blum-Micali pseudorandom generator. The security of this generator, classified as cryptographically secure, is based on the hypothesis of intractability of the discrete logarithm problem in Classical Computing. The proposed attack is based on the quantum search algorithm jointly with the quantum discrete logarithm procedure and aims to compromise the unpredictability of the referred generator, recovering all of its past and future outputs. This work also describes generalizations that enables attacks to generators from the Blum-Micali construction and also to generators with multiple hard-core predicates. Such generalizations also allow attacks when the adversary intercepts non-consecutive bits or when there are less bits than required. Compared to its classical counterpart, the proposed algorithm has a quadractic speedup regarding the retrieval of the representant of the generator’s internal state followed by a super polynomial speedup regarding the obtention of the entire generator’sinternalstate. These results represent menaces of the Quantum Computing paradigm against the security of pseudorandom generators adopted in many real-world cryptosystems.
|
Page generated in 0.125 seconds