• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 2
  • 1
  • Tagged with
  • 15
  • 15
  • 15
  • 9
  • 8
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Premiers travaux relatifs au concept de matière communicante : Processus de dissémination des informations relatives au produit / The first work related to the concept of communicatiing material : information dissemination process for product-related data

Kubler, Sylvain 07 November 2012 (has links)
Depuis de nombreuses années, plusieurs communautés telles que IMS (Intelligent Manufacturing Systems), HMS (Holonic Manufacturing System) ont suggéré l'utilisation de produits intelligents pour rendre les systèmes adaptables et adaptatifs et ont montré les bénéfices pouvant être réalisés, tant au niveau économique, qu'au niveau de la traçabilité des produits, qu'au niveau du partage des informations ou encore de l'optimisation des procédés de fabrication. Cependant, un grand nombre de questions restent ouvertes comme la collecte des informations liées au produit, leur stockage à travers la chaîne logistique, ou encore la dissémination et la gestion de ces informations tout au long de leur cycle de vie. La contribution de cette thèse consiste en la définition d'un cadre de dissémination des informations relatives au produit durant l'ensemble de son cycle de vie. Ce cadre de dissémination est associé à un nouveau paradigme qui change radicalement la manière de voir le produit et la matière. Ce nouveau concept consiste à donner la faculté au produit d'être intrinséquement et intégralement "communicant". Le cadre de dissémination des informations proposé offre la possibilité à l'utilisateur d'embarquer des informations sensibles au contexte d'utilisation du produit communicant. Outre la définition du processus de dissémination des informations, cette thèse offre un aperçu des champs de recherche, tant scientifiques que technologiques, à investiguer à l'avenir concernant le concept de "matière communicante" / Over the last decade, communities involved with intelligent-manufacturing systems (IMS - Intelligent Manufacturing Systems, HMS - Holonic Manufacturing System) have demonstrated that systems that integrate intelligent products can be more efficient, flexible and adaptable. Intelligent products may prove to be beneficial economically, to deal with product traceability and information sharing along the product lifecycle. Nevertheless, there are still some open questions such as the specification of what information should be gathered, stored and distributed and how it should be managed during the lifecycle of the product. The contribution of this thesis is to define a process for disseminating information related to the product over its lifecycle. This process is combined with a new paradigm, which changes drastically the way we view the material. This concept aims to give the ability for the material to be intrinsically and wholly "communicating". The data dissemination process allow users to store context-sensitive information on communicating product. In addition to the data dissemination process, this thesis gives insight into the technological and scientific research fields inherent to the concept of "communicating material", which remain to be explored
12

Premiers travaux relatifs au concept de matière communicante : Processus de dissémination des informations relatives au produit

Kubler, Sylvain 07 December 2012 (has links) (PDF)
Depuis de nombreuses années, plusieurs communautés telles que IMS (Intelligent Manufacturing Systems), HMS (Holonic Manufacturing System) ont suggéré l'utilisation de produits intelligents pour rendre les systèmes adaptables et adaptatifs et ont montré les bénéfices pouvant être réalisés, tant au niveau économique, qu'au niveau de la traçabilité des produits, qu'au niveau du partage des informations ou encore de l'optimisation des procédés de fabrication. Cependant, un grand nombre de questions restent ouvertes comme la collecte des informations liées au produit, leur stockage à travers la chaîne logistique, ou encore la dissémination et la gestion de ces informations tout au long de leur cycle de vie. La contribution de cette thèse est la définition d'un cadre de dissémination des informations relatives au produit durant l'ensemble de son cycle de vie. Ce cadre de dissémination est associé à un nouveau paradigme qui change radicalement la manière de voir le produit et la matière. Ce nouveau concept consiste à donner la faculté au produit d'être intrinsèquement et intégralement communicant. Le cadre de dissémination des informations offre la possibilité à l'utilisateur d'embarquer des informations sensibles au contexte d'utilisation du produit communicant. Outre la définition du processus de dissémination des informations, cette thèse offre un aperçu des champs de recherche, tant scientifiques que technologiques, à investiguer par l'avenir concernant le concept de matière communicante.
13

Exploitation dynamique des données de production pour améliorer les méthodes DFM dans l'industrie Microélectronique

Shahzad, Muhammad Kashif 05 October 2012 (has links) (PDF)
La " conception pour la fabrication " ou DFM (Design for Manufacturing) est une méthode maintenant classique pour assurer lors de la conception des produits simultanément la faisabilité, la qualité et le rendement de la production. Dans l'industrie microélectronique, le Design Rule Manual (DRM) a bien fonctionné jusqu'à la technologie 250nm avec la prise en compte des variations systématiques dans les règles et/ou des modèles basés sur l'analyse des causes profondes, mais au-delà de cette technologie, des limites ont été atteintes en raison de l'incapacité à sasir les corrélations entre variations spatiales. D'autre part, l'évolution rapide des produits et des technologies contraint à une mise à jour " dynamique " des DRM en fonction des améliorations trouvées dans les fabs. Dans ce contexte les contributions de thèse sont (i) une définition interdisciplinaire des AMDEC et analyse de risques pour contribuer aux défis du DFM dynamique, (ii) un modèle MAM (mapping and alignment model) de localisation spatiale pour les données de tests, (iii) un référentiel de données basé sur une ontologie ROMMII (referential ontology Meta model for information integration) pour effectuer le mapping entre des données hétérogènes issues de sources variées et (iv) un modèle SPM (spatial positioning model) qui vise à intégrer les facteurs spatiaux dans les méthodes DFM de la microélectronique, pour effectuer une analyse précise et la modélisation des variations spatiales basées sur l'exploitation dynamique des données de fabrication avec des volumétries importantes.
14

Multi-utilisation de données complexes et hétérogènes : application au domaine du PLM pour l’imagerie biomédicale / Multi-use of complex and heterogenous data : application in the domain of PLM for biomedical imaging

Pham, Cong Cuong 15 June 2017 (has links)
L’émergence des technologies de l’information et de la communication (TIC) au début des années 1990, notamment internet, a permis de produire facilement des données et de les diffuser au reste du monde. L’essor des bases de données, le développement des outils applicatifs et la réduction des coûts de stockage ont conduit à l’augmentation quasi exponentielle des quantités de données au sein de l’entreprise. Plus les données sont volumineuses, plus la quantité d’interrelations entre données augmente. Le grand nombre de corrélations (visibles ou cachées) entre données rend les données plus entrelacées et complexes. Les données sont aussi plus hétérogènes, car elles peuvent venir de plusieurs sources et exister dans de nombreux formats (texte, image, audio, vidéo, etc.) ou à différents degrés de structuration (structurées, semi-structurées, non-structurées). Les systèmes d’information des entreprises actuelles contiennent des données qui sont plus massives, complexes et hétérogènes. L’augmentation de la complexité, la globalisation et le travail collaboratif font qu’un projet industriel (conception de produit) demande la participation et la collaboration d’acteurs qui viennent de plusieurs domaines et de lieux de travail. Afin d’assurer la qualité des données, d’éviter les redondances et les dysfonctionnements des flux de données, tous les acteurs doivent travailler sur un référentiel commun partagé. Dans cet environnement de multi-utilisation de données, chaque utilisateur introduit son propre point de vue quand il ajoute de nouvelles données et informations techniques. Les données peuvent soit avoir des dénominations différentes, soit ne pas avoir des provenances vérifiables. Par conséquent, ces données sont difficilement interprétées et accessibles aux autres acteurs. Elles restent inexploitées ou non exploitées au maximum afin de pouvoir les partager et/ou les réutiliser. L’accès aux données (ou la recherche de données), par définition est le processus d’extraction des informations à partir d’une base de données en utilisant des requêtes, pour répondre à une question spécifique. L’extraction des informations est une fonction indispensable pour tout système d’information. Cependant, cette dernière n’est jamais facile car elle représente toujours un goulot majeur d’étranglement pour toutes les organisations (Soylu et al. 2013). Dans l’environnement de données complexes, hétérogènes et de multi-utilisation de données, fournir à tous les utilisateurs un accès facile et simple aux données devient plus difficile pour deux raisons : - Le manque de compétences techniques. Pour formuler informatiquement une requête complexe (les requêtes conjonctives), l’utilisateur doit connaitre la structuration de données, c’est-à-dire la façon dont les données sont organisées et stockées dans la base de données. Quand les données sont volumineuses et complexes, ce n’est pas facile d’avoir une compréhension approfondie sur toutes les dépendances et interrelations entre données, même pour les techniciens du système d’information. De plus, cette compréhension n’est pas forcément liée au savoir et savoir-faire du domaine et il est donc, très rare que les utilisateurs finaux possèdent les compétences suffisantes. - Différents points de vue des utilisateurs. Dans l’environnement de multi-utilisation de données, chaque utilisateur introduit son propre point de vue quand il ajoute des nouvelles données et informations techniques. Les données peuvent être nommées de manières très différentes et les provenances de données ne sont pas suffisamment fournies. / The emergence of Information and Comunication Technologies (ICT) in the early 1990s, especially the Internet, made it easy to produce data and disseminate it to the rest of the world. The strength of new Database Management System (DBMS) and the reduction of storage costs have led to an exponential increase of volume data within entreprise information system. The large number of correlations (visible or hidden) between data makes them more intertwined and complex. The data are also heterogeneous, as they can come from many sources and exist in many formats (text, image, audio, video, etc.) or at different levels of structuring (structured, semi-structured, unstructured). All companies now have to face with data sources that are more and more massive, complex and heterogeneous.technical information. The data may either have different denominations or may not have verifiable provenances. Consequently, these data are difficult to interpret and accessible by other actors. They remain unexploited or not maximally exploited for the purpose of sharing and reuse. Data access (or data querying), by definition, is the process of extracting information from a database using queries to answer a specific question. Extracting information is an indispensable function for any information system. However, the latter is never easy but it always represents a major bottleneck for all organizations (Soylu et al. 2013). In the environment of multiuse of complex and heterogeneous, providing all users with easy and simple access to data becomes more difficult for two reasons : - Lack of technical skills : In order to correctly formulate a query a user must know the structure of data, ie how the data is organized and stored in the database. When data is large and complex, it is not easy to have a thorough understanding of all the dependencies and interrelationships between data, even for information system technicians. Moreover, this understanding is not necessarily linked to the domain competences and it is therefore very rare that end users have sufficient theses such skills. - Different user perspectives : In the multi-use environment, each user introduces their own point of view when adding new data and technical information. Data can be namedin very different ways and data provenances are not sufficiently recorded. Consequently, they become difficultly interpretable and accessible by other actors since they do not have sufficient understanding of data semantics. The thesis work presented in this manuscript aims to improve the multi-use of complex and heterogeneous data by expert usiness actors by providing them with a semantic and visual access to the data. We find that, although the initial design of the databases has taken into account the logic of the domain (using the entity-association model for example), it is common practice to modify this design in order to adapt specific techniques needs. As a result, the final design is often a form that diverges from the original conceptual structure and there is a clear distinction between the technical knowledge needed to extract data and the knowledge that the expert actors have to interpret, process and produce data (Soylu et al. 2013). Based on bibliographical studies about data management tools, knowledge representation, visualization techniques and Semantic Web technologies (Berners-Lee et al. 2001), etc., in order to provide an easy data access to different expert actors, we propose to use a comprehensive and declarative representation of the data that is semantic, conceptual and integrates domain knowledge closeed to expert actors.
15

Exploitation dynamique des données de production pour améliorer les méthodes DFM dans l'industrie Microélectronique / Towards production data mining to improve DFM methods in Microelectronics industry

Shahzad, Muhammad Kashif 05 October 2012 (has links)
La « conception pour la fabrication » ou DFM (Design for Manufacturing) est une méthode maintenant classique pour assurer lors de la conception des produits simultanément la faisabilité, la qualité et le rendement de la production. Dans l'industrie microélectronique, le Design Rule Manual (DRM) a bien fonctionné jusqu'à la technologie 250nm avec la prise en compte des variations systématiques dans les règles et/ou des modèles basés sur l'analyse des causes profondes, mais au-delà de cette technologie, des limites ont été atteintes en raison de l'incapacité à sasir les corrélations entre variations spatiales. D'autre part, l'évolution rapide des produits et des technologies contraint à une mise à jour « dynamique » des DRM en fonction des améliorations trouvées dans les fabs. Dans ce contexte les contributions de thèse sont (i) une définition interdisciplinaire des AMDEC et analyse de risques pour contribuer aux défis du DFM dynamique, (ii) un modèle MAM (mapping and alignment model) de localisation spatiale pour les données de tests, (iii) un référentiel de données basé sur une ontologie ROMMII (referential ontology Meta model for information integration) pour effectuer le mapping entre des données hétérogènes issues de sources variées et (iv) un modèle SPM (spatial positioning model) qui vise à intégrer les facteurs spatiaux dans les méthodes DFM de la microélectronique, pour effectuer une analyse précise et la modélisation des variations spatiales basées sur l'exploitation dynamique des données de fabrication avec des volumétries importantes. / The DFM (design for manufacturing) methods are used during technology alignment and adoption processes in the semiconductor industry (SI) for manufacturability and yield assessments. These methods have worked well till 250nm technology for the transformation of systematic variations into rules and/or models based on the single-source data analyses, but beyond this technology they have turned into ineffective R&D efforts. The reason for this is our inability to capture newly emerging spatial variations. It has led an exponential increase in technology lead times and costs that must be addressed; hence, objectively in this thesis we are focused on identifying and removing causes associated with the DFM ineffectiveness. The fabless, foundry and traditional integrated device manufacturer (IDM) business models are first analyzed to see coherence against a recent shift in business objectives from time-to-market (T2M) and time-to-volume towards (T2V) towards ramp-up rate. The increasing technology lead times and costs are identified as a big challenge in achieving quick ramp-up rates; hence, an extended IDM (e-IDM) business model is proposed to support quick ramp-up rates which is based on improving the DFM ineffectiveness followed by its smooth integration. We have found (i) single-source analyses and (ii) inability to exploit huge manufacturing data volumes as core limiting factors (failure modes) towards DFM ineffectiveness during technology alignment and adoption efforts within an IDM. The causes for single-source root cause analysis are identified as the (i) varying metrology reference frames and (ii) test structures orientations that require wafer rotation prior to the measurements, resulting in varying metrology coordinates (die/site level mismatches). A generic coordinates mapping and alignment model (MAM) is proposed to remove these die/site level mismatches, however to accurately capture the emerging spatial variations, we have proposed a spatial positioning model (SPM) to perform multi-source parametric correlation based on the shortest distance between respective test structures used to measure the parameters. The (i) unstructured model evolution, (ii) ontology issues and (iii) missing links among production databases are found as causes towards our inability to exploit huge manufacturing data volumes. The ROMMII (referential ontology Meta model for information integration) framework is then proposed to remove these issues and enable the dynamic and efficient multi-source root cause analyses. An interdisciplinary failure mode effect analysis (i-FMEA) methodology is also proposed to find cyclic failure modes and causes across the business functions which require generic solutions rather than operational fixes for improvement. The proposed e-IDM, MAM, SPM, and ROMMII framework results in accurate analysis and modeling of emerging spatial variations based on dynamic exploitation of the huge manufacturing data volumes.

Page generated in 0.0852 seconds