• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Accumulation de dose à partir de champs de déformation 4D appliqués aux traitements au CyberKnife et à l'IMRT

Cousineau Daoust, Vincent 08 1900 (has links)
Le cancer pulmonaire est la principale cause de décès parmi tous les cancers au Canada. Le pronostic est généralement faible, de l'ordre de 15% de taux de survie après 5 ans. Les déplacements internes des structures anatomiques apportent une incertitude sur la précision des traitements en radio-oncologie, ce qui diminue leur efficacité. Dans cette optique, certaines techniques comme la radio-chirurgie et la radiothérapie par modulation de l'intensité (IMRT) visent à améliorer les résultats cliniques en ciblant davantage la tumeur. Ceci permet d'augmenter la dose reçue par les tissus cancéreux et de réduire celle administrée aux tissus sains avoisinants. Ce projet vise à mieux évaluer la dose réelle reçue pendant un traitement considérant une anatomie en mouvement. Pour ce faire, des plans de CyberKnife et d'IMRT sont recalculés en utilisant un algorithme Monte Carlo 4D de transport de particules qui permet d'effectuer de l'accumulation de dose dans une géométrie déformable. Un environnement de simulation a été développé afin de modéliser ces deux modalités pour comparer les distributions de doses standard et 4D. Les déformations dans le patient sont obtenues en utilisant un algorithme de recalage déformable d'image (DIR) entre les différentes phases respiratoire générées par le scan CT 4D. Ceci permet de conserver une correspondance de voxels à voxels entre la géométrie de référence et celles déformées. La DIR est calculée en utilisant la suite ANTs («Advanced Normalization Tools») et est basée sur des difféomorphismes. Une version modifiée de DOSXYZnrc de la suite EGSnrc, defDOSXYZnrc, est utilisée pour le transport de particule en 4D. Les résultats sont comparés à une planification standard afin de valider le modèle actuel qui constitue une approximation par rapport à une vraie accumulation de dose en 4D. / Pulmonary cancer is the main cause of death amongst all cancers in Canada with a prognosis of about 15% survival rate in 5 years. The efficiency of radiotherapy treatments is lower when high displacements of the tumors are observed, mostly caused by intrafraction respiratory motion. Advanced techniques such as radiosurgery and intensity-modulated radiotherapy treatments (IMRT) are expected to provide better clinical results by delivering higher radiation doses to the tumor while sparing the surrounding healthy lung tissues. The goal of this project is to perform 4D Monte Carlo dose recalculations to assess the dosimetric impact of moving tumors in CyberKnife and IMRT treatments using dose accumulation in deforming anatomies. Scripts developed in-house were used to model both situations and to compare the Monte Carlo dose distributions with those obtained with standard clinical plans. Displacement vectors fields are obtained from a 4D CT data set and a deformable image registration (DIR) algorithm which allows a voxel-to-voxel correspondence between each respiratory phase. The DIR is computed by the Advanced Normalization Tools (ANTs) software and is mostly based on diffeormophisms. A modified version of DOSXYZnrc from EGSnrc software, defDOSXYZnrc, is used to transport radiation through non-linear geometries. These results are then compared to a typical 3D plan to determine whether or not the current planification is a good approximation of the true 4D dose calculation.
2

Contrôle en temps réel de la précision du suivi indirect de tumeurs mobiles en radiothérapie

Remy, Charlotte 08 1900 (has links)
Le but de la radiothérapie est d’irradier les cellules cancéreuses tout en préservant au maximum les tissus sains environnants. Or, dans le cas du cancer du poumon, la respiration du patient engendre des mouvements de la tumeur pendant le traitement. Une solution possible est de repositionner continuellement le faisceau d’irradiation sur la cible tumorale en mouvement. L’e cacité et la sûreté de cette approche reposent sur la localisation précise en temps réel de la tumeur. Le suivi indirect consiste à inférer la position de la cible tumorale à partir de l’observation d’un signal substitut, visible en continu sans nécessiter de rayonnement ionisant. Un modèle de corrélation spatial doit donc être établi. Par ailleurs, pour compenser la latence du système, l’algorithme de suivi doit pouvoir également anticiper la position future de la cible. Parce que la respiration du patient varie dans le temps, les modèles de prédiction et de corrélation peuvent devenir imprécis. La prédiction de la position de la tumeur devrait alors idéalement être complétée par l’estimation des incertitudes associées aux prédictions. Dans la pratique clinique actuelle, ces incertitudes de positionnement en temps réel ne sont pas explicitement prédites. Cette thèse de doctorat s’intéresse au contrôle en temps réel de la précision du suivi indirect de tumeurs mobiles en radiothérapie. Dans un premier temps, une méthode bayésienne pour le suivi indirect en radiothérapie est développée. Cette approche, basée sur le filtre de Kalman, permet de prédire non seulement la position future de la tumeur à partir d’un signal substitut, mais aussi les incertitudes associées. Ce travail o re une première preuve de concept, et montre également le potentiel du foie comme substitut interne, qui apparait plus robuste et fiable que les marqueurs externes communément utilisés dans la pratique clinique. Dans un deuxième temps, une adaptation de la méthode est proposée afin d’améliorer sa robustesse face aux changements de respiration. Cette innovation permet de prédire des régions de confiance adaptatives, capables de détecter les erreurs de prédiction élevées, en se basant exclusivement sur l’observation du signal substitut. Les résultats révèlent qu’à sensibilité élevée (90%), une spécificité d’environ 50% est obtenue. Un processus de validation innovant basé sur ces régions de confiance adaptatives est ensuite évalué et comparé au processus conventionnel qui consiste en des mesures de la cible à intervalles de temps fixes et prédéterminés. Une version adaptative de la méthode bayésienne est donc développée afin d’intégrer des mesures occasionnelles de la position de la cible. Les résultats confirment que les incertitudes prédites par la méthode bayésienne permettent de détecter les erreurs de prédictions élevées, et démontrent que le processus de validation basé sur ces incertitudes a le potentiel d’être plus e cace que les validations régulières. Ces approches bayésiennes sont validées sur des séquences respiratoires de volontaires, acquises par imagerie par résonance magnétique (IRM) dynamique et interpolées à haute fréquence. Afin de compléter l’évaluation de la méthode bayésienne pour le suivi indirect, une validation expérimentale préliminaire est conduite sur des données cliniques de patients atteints de cancer du poumon. Les travaux de ce projet doctoral promettent une amélioration du contrôle en temps réel de la précision des prédictions lors des traitements de radiothérapie. Finalement, puisque l’imagerie ultrasonore pourrait être employée pour visualiser les substituts internes, une étude préliminaire sur l’évaluation automatique de la qualité des images ultrasonores est présentée. Ces résultats pourront être utilisés ultérieurement pour le suivi indirect en radiothérapie en vue d’optimiser les acquisitions ultrasonores pendant les traitements et faciliter l’extraction automatique du mouvement du substitut. / The goal of radiotherapy is to irradiate cancer cells while maintaining a low dose of radiation to the surrounding healthy tissue. In the case of lung cancer, the patient’s breathing causes the tumor to move during treatment. One possible solution is to continuously reposition the irradiation beam on the moving target. The e ectiveness and safety of this approach rely on accurate real-time localization of the tumor. Indirect strategies derive the target positions from a correlation model with a surrogate signal, which is continuously monitored without the need for radiation-based imaging. In addition, to compensate for system latency, the tracking algorithm must also be able to anticipate the future position of the target. Because the patient’s breathing varies over time, prediction and correlation models can become inaccurate. Ideally, the prediction of the tumor location would also include an estimation of the uncertainty associated with the prediction. However, in current clinical practice, these real-time positioning uncertainties are not explicitly predicted. This doctoral thesis focuses on real-time control of the accuracy of indirect tracking of mobile tumors in radiotherapy. First, a Bayesian method is developed. This approach, based on Kalman filter theory, allows predicting both future target motion in real-time from a surrogate signal and associated uncertainty. This work o ers a first proof of concept, and also shows the potential of the liver as an internal substitute as it appears more robust and reliable than the external markers commonly used in clinical practice. Second, an adaptation of the method is proposed to improve its robustness against changes in breathing. This innovation enables the prediction of adaptive confidence regions that can be used to detect significant prediction errors, based exclusively on the observation of the surrogate signal. The results show that at high sensitivity (90%), a specificity of about 50% is obtained. A new validation process based on these adaptive confidence regions is then evaluated and compared to the conventional validation process (i.e., target measurements at fixed and predetermined time intervals). An adaptive version of the Bayesian method is therefore developed to valuably incorporate occasional measurements of the target position. The results confirm that the uncertainties predicted by the Bayesian method can detect high prediction errors, and demonstrate that the validation process based on these uncertainties has the potential to be more e cient and e ective than regular validations. For these studies, the proposed Bayesian methods are validated on respiratory sequences of volunteers, acquired by dynamic MRI and interpolated at high frequency. In order to complete the evaluation of the Bayesian method for indirect tracking, experimental validation is conducted on clinical data of patients with lung cancer. The work of this doctoral project promises to improve the real-time control of the accuracy of predictions during radiotherapy treatments. Finally, since ultrasound imaging could be used to visualize internal surrogates, a preliminary study on automatic ultrasound image quality assessment is presented. These results can later be used for indirect tracking in radiotherapy to optimize ultrasound acquisitions during treatments and facilitate the automatic estimation of surrogate motion.

Page generated in 0.1472 seconds