• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Encapsulation sous vide de micro-bolomètres à basse température / Low temperature packaging of micro-bolometers under vacuum

Lemettre, Sylvain 12 December 2017 (has links)
Plusieurs catégories de MEMS nécessitent un environnement sous vide pour fonctionner de manière optimale, tel le micro-bolomètre. Le fonctionnement optimal de ce détecteur, à la base des imageurs infrarouge non refroidis, nécessite qu’il soit thermiquement isolé, et donc qu’il évolue dans une atmosphère raréfiée (< 10-2 mbar). Le maintien sous vide d’une matrice bolométrique durant la durée de vie d'une dizaine d’années du composant est réalisé par une encapsulation dans un boîtier de très faible volume (de 0,5 à 30 µL).Cette encapsulation sous vide fait appel à deux techniques complémentaires : le scellement hermétique sous vide et l’intégration d’un dispositif d’absorption du gaz dans la cavité, appelé getter. La technique de scellement donnant un joint de scellement suffisamment hermétique (<10-14 atm.cm3.s-1) est la soudure métallique. Le getter est un film mince métallique à base de métaux de transition. Il acquiert une activité de sorption lorsqu’il est chauffé.Les procédés d’encapsulation sous vide de l’état de l’art permettent l’encapsulation de micro-bolomètres à des températures de 300°C. Mais il est fort probable que les futurs matériaux micro-bolométriques en cours de développement ne supporteront pas des températures de recuit supérieures à 280°C. Leur encapsulation demande donc la mise à disposition d’un nouveau procédé de scellement sous vide à plus basse température et d’un nouveau film getter s’activant aussi à basse température.Ces deux techniques ont par conséquent été développées, au moyen de caractérisations en laboratoire et de tests sur composants industriels. / Some kinds of MEMS like micro-bolometers require vacuum to operate optimally. This IR sensor is the cornerstone for uncooled infrared detection. Its best sensing capacity is achieved by thermal insulation, which is realized by placing it under vacuum (< 10-2 mbar). The vacuum is maintained throughout the camera lifetime thanks to a microvolume packaging (0.5 to 30 µL).The MEMS vacuum packaging implies the combination of two complementary technical solutions: first hermetic sealing, then getter device integration absorbing internal gas. The sealing technique retained (which enables leak rate <10-14 atm.cm3.s-1) is the metallic bonding. The getter is a thin transition metal film. When activated by an annealing, its surface traps gaseous molecules. The sorption process of the getter is ideally activated during the sealing process of the bonding.The typical temperature packaging process for micro-bolometers is 300°C. It is expected that sensibility of new types of micro-bolometers materials will be degraded if they are exposed to temperatures higher than 280°C. Consequently, their encapsulation require the elaboration of a new low temperature packaging technology.Such a technology has been developed based on experimental studies in laboratory and tests under industrial conditions.

Page generated in 0.035 seconds