• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A equação de Euler e a análise assintótica de Gevrey / Euler Equation and Gevrey Asymptotic Analysis

Max Reinhold Jahnke 04 October 2013 (has links)
Neste trabalho, introduzimos a noção de desenvolvimento assintótico em classes de Gevrey e mostramos como o conceito clássico de convergência de séries de potências pode ser generalizado para englobar o caso em que o raio de convergência é nulo. Essa técnica pode ser útil em situações em que é necessário trabalhar com séries formais, como no estudo de Equações Diferenciais. Caracterizamos o conjunto das funções holomorfas que admitem desenvolvimento assintótico e, em cada classe de Gevrey, definimos uma aplicação que associa uma função a uma série formal. Determinamos sob quais condições tal aplicação é sobrejetora e sob quais ela é injetora, possibilitando a ampliação do conceito de convergência e as aplicações da teoria. Além disso, mostramos como essa técnica pode ser usada para obter resultados em equações diferenciais. Para isso, fazemos uma breve introdução de Equações Diferenciais com uma variável complexa e introduzimos o conceito de Polígono de Newton, ferramenta que permite obter a classe de Gevrey de uma solução formal. Finalmente, encontramos condições para que a soma de uma solução formal de uma equação diferencial seja uma solução clássica. / In this work, we introduce the notion of Gevrey asymptotic expansion and we show how the classical concept of a convergent power series can be generalized to include the case in which the radius of convergence is zero. This technique can be useful in situations where it is necessary to work with formal power series, as in the study of Differential Equations. We characterize the set of holomorphic functions which admit Gevrey asymptotic expansion and we define in each Gevrey class a map that associates to function in the class a formal series. We determine under which conditions such a map is surjective and under which it is injective, allowing the extension of the concept of convergence and applications of the theory. Furthermore, we show how this technique can be used to obtain results in Differential Equations. For this, we briefly recall the theory of Differential Equations in one complex variable and we introduce the concept of the Newton Polygon, a tool that allows us to find the Gevrey class of a formal solution. Finally, we find suficient conditions for the sum of a formal solution of a differential equation to be a classical solution.
2

A equação de Euler e a análise assintótica de Gevrey / Euler Equation and Gevrey Asymptotic Analysis

Jahnke, Max Reinhold 04 October 2013 (has links)
Neste trabalho, introduzimos a noção de desenvolvimento assintótico em classes de Gevrey e mostramos como o conceito clássico de convergência de séries de potências pode ser generalizado para englobar o caso em que o raio de convergência é nulo. Essa técnica pode ser útil em situações em que é necessário trabalhar com séries formais, como no estudo de Equações Diferenciais. Caracterizamos o conjunto das funções holomorfas que admitem desenvolvimento assintótico e, em cada classe de Gevrey, definimos uma aplicação que associa uma função a uma série formal. Determinamos sob quais condições tal aplicação é sobrejetora e sob quais ela é injetora, possibilitando a ampliação do conceito de convergência e as aplicações da teoria. Além disso, mostramos como essa técnica pode ser usada para obter resultados em equações diferenciais. Para isso, fazemos uma breve introdução de Equações Diferenciais com uma variável complexa e introduzimos o conceito de Polígono de Newton, ferramenta que permite obter a classe de Gevrey de uma solução formal. Finalmente, encontramos condições para que a soma de uma solução formal de uma equação diferencial seja uma solução clássica. / In this work, we introduce the notion of Gevrey asymptotic expansion and we show how the classical concept of a convergent power series can be generalized to include the case in which the radius of convergence is zero. This technique can be useful in situations where it is necessary to work with formal power series, as in the study of Differential Equations. We characterize the set of holomorphic functions which admit Gevrey asymptotic expansion and we define in each Gevrey class a map that associates to function in the class a formal series. We determine under which conditions such a map is surjective and under which it is injective, allowing the extension of the concept of convergence and applications of the theory. Furthermore, we show how this technique can be used to obtain results in Differential Equations. For this, we briefly recall the theory of Differential Equations in one complex variable and we introduce the concept of the Newton Polygon, a tool that allows us to find the Gevrey class of a formal solution. Finally, we find suficient conditions for the sum of a formal solution of a differential equation to be a classical solution.
3

Exponential function of pseudo-differential operators

Galstian, Anahit, Yagdjian, Karen January 1997 (has links)
The paper is devoted to the construction of the exponential function of a matrix pseudo-differential operator which do not satisfy any of the known theorems (see, Sec.8 Ch.VIII and Sec.2 Ch.XI of [17]). The applications to the construction of the fundamental solution for the Cauchy problem for the hyperbolic operators with the characteristics of variable multiplicity are given, too.
4

A new type of regularity with applications to the wave front sets / Nova vrsta regularnosti sa primenama na talasni front

Tomić Filip 30 September 2016 (has links)
<p>We introduce a family of smooth functions which are &quot;less regu-lar&quot; than the Gevrey functions, and study its basic properties. In particular&nbsp;we prove the standard results concerning algebra property and stability under finite order derivation. Moreover, we &nbsp;construct infnite order operators&nbsp;which leads us to the definition of class with ultradifferentiable property. We&nbsp;also prove that our classes are inverse-closed, and this result is the essential&nbsp;part in the proof of our main result presented in the final Chapter. Moreover,&nbsp;using the techniques of microlocal analysis, we introduce and investigate the<br />corresponding wave front sets, and the prove the results related to singular&nbsp;support of a distribution. Our main results shows how the singularities of&nbsp;solutions to partial differential equations (PDE&#39;s in short) propagate in the&nbsp;framework of our regularity.</p> / <p>U ovoj tezi defini&scaron;emo novu klasu glatkih funkcija i izučavamo njihove osnovne osobine. Pokazujemo da na&scaron;e klase imaju svojsto algebre kao i da su zatvorene u odnosu na delovanje operatora izvoda konačnog reda.Sta vi&scaron;e, konstrui&scaron;emo diferencijalne operatore beskonačnog reda i to nas dovodi do definicije ultradiferencijabilnih klasa funkcija. Takode dokazujemo osobinu zatvorenosti u odnosu na inverze, i taj rezultat je najvažniji deo u dokazu glavne teoreme koja je formulisana u poslednjoj glavi. Koristeći tehnike mikrolokalne analize, uvodimo i izučavamo odgovarajuće talasne frontove, i pokazujemo odgovarajuća tvrdjenja vezana za singularni nosač distribucije. Na&scaron; glavni rezultat pokazuje kako se prostiru singulariteti re&scaron;enja linearnih parcijalnih diferencijalnih jednačina u okviru na&scaron;e regularnosti.</p>

Page generated in 0.0357 seconds