Spelling suggestions: "subject:"glacial chronology"" "subject:"glacial gechronology""
1 |
A comparison of glacial chronologies between the Eastern and Western Cordilleras, BoliviaSmith, Colby A. 25 August 2008 (has links)
No description available.
|
2 |
Late Pleistocene Glacial Chronology of the Western Ahklun Mountains, Southwestern AlaskaBriner, Jason P. 01 May 1998 (has links)
New glacial mapping and 35 cosmogenic 36Cl surface exposure ages, the first ever reported from Alaska , constrain the extent and timing of late Pleistocene glacial fluctuations in the western Ahklun Mountain s, southwe stern Alaska. Morphometric and soil relativeage data characterize two main drift units deposited during the Arolik Lake and Klak Creek glaciations , named herein. During the Arolik Lake glaciation (early Wisconsin), outlet glaciers emanated from an ice cap over the central portion of the Ahklun Mountains and deposited moraines at or beyond the modern coast. These moraines have slope angles averaging about 11° and crests averaging about 35 m wide . Four moraine boulders deposited during this glaciation have a weighted mean surface exposure age of 53.6 ± 2.0 36Cl ka.
During the Klak Creek glaciation (late Wisconsin), ice-cap outlet glaciers deposited moraines 20-80 km up-valley from Arolik Lake moraines. Valley glaciers expanded from high massifs that fringe the major river valleys in the western Ahklun Mountains and terminated independently from the relatively restricted ice-cap outlet glaciers. Moraines deposited during the Klak Creek glaciation have steeper slopes (mean = -18°) and sharper crests (mean= about 17 m) than do Arolik Lake moraines. Twenty-eight 36Cl ages were obtained from six Klak Creek moraines from three valleys and reveal two phases of glaciation during the late Wisconsin, one from about 25 to 23 36Cl ka, and another from 19 to 15 36Cl ka. An ice-cap outlet glacier moraine underlies a valley glacier terminal moraine, both of which have ages of 18-19 36Cl ka, and indicates that the ice-cap outlet glacier had retreated from its maximum position shortly before the valley glacier reached its maximum position.
Equilibrium-line altitudes (ELAs) for reconstructed Klak Creek valley glaciers average about 400 m, which is only about 200 m below the estimated modem altitude. The restricted extent of Klak Creek glaciers might reflect a lack of available moisture as sea ice covered the Bering Sea during the peak of the last global glacial maximum. When compared to the marine oxygen-isotope record, the timing of glacier advances in the western Ahklun Mountains indicates that glaciers responded to both regional and global climate changes.
|
3 |
Surface Exposure Dating of Stream Terraces in the Chinese Pamir: Glacial Chronology and Paleoclimatic ImplicationsKirby, Benjamin Thomas 25 June 2008 (has links)
No description available.
|
4 |
Deglacial chronology and glacial stratigraphy of the western Thunder Bay lowland, northwest Ontario, CanadaLoope, Henry Munro January 2006 (has links)
No description available.
|
5 |
Quaternary glaciations in the Lago Pueyrredón Valley, ArgentinaHein, Andrew S. January 2009 (has links)
This thesis develops a better knowledge of the extent and timing of glaciations in southern Argentina throughout the Quaternary. It provides a detailed understanding of successive major glacial outlet lobes in the Lago Pueyrredón valley. The glacial and glaciofluvial deposits in the valley, as elsewhere in the region, are extremely well-preserved and reflect punctuated glacial advances between ~ 1.1 Ma and ~ 17 ka. Several intermediate glaciations are undated, constrained by the limited time frame of radiocarbon age dating, the limited potential volcanic sites for K-Ar or 40Ar/39Ar age dating, and erosion and exhumation problems associated with cosmogenic-nuclide surface exposure ages on moraines. This thesis provides a new chronology for the mid-Quaternary glaciations based on methodological advances in cosmogenic-nuclide surface exposure age dating. This is done by deriving ages from glacial outwash terrace sediment and demonstrating their reliability. The work shows that for younger (i.e., last glacial) moraines, well-constrained ages can be derived from the common-practice of dating large boulders on the moraine surface. However, on older moraines, the ages so-derived become considerably scattered. This is interpreted to be caused primarily by boulder exhumation as a consequence of moraine erosion, resulting in shorter residence of some boulders at the surface relative to the moraine formation date. By contrast, glacial outwash surfaces in this area, if carefully chosen, can be shown to have undergone little aggradation or erosion, and thus have had long and consistent surface exposure since formation. Provided these surfaces can be stratigraphically linked with the glacial limits, they can provide good surface exposure ages. This has been convincingly confirmed in one location by a sequence of ages obtained from a 10Be concentration depth-profile which demonstrate the surface stability and lack of inherited nuclides. Using these methods, cosmogenic 10Be and 26Al surface exposure ages indicate successive major advances occurred at ~ 1.2 Ma, ~ 600 ka, ~ 260 ka and ~27 – 17.5 ka. These are correlated with global marine and ice core records.
|
Page generated in 0.0445 seconds