• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the Holocene History of Eliot Glacier, Mount Hood, Oregon

Jones, Nadia Sittara 15 August 2012 (has links)
This research documents the Holocene glacial history of Mount Hood, Cascade Mountains, Oregon by analyzing a set of three lateral moraines abutting Eliot Glacier, the largest glacier on the mountain. This study seeks to: 1) establish the relative ages of these lateral moraines and 2) determine if these features represent distinct glacial advances. The hypothesis is that the lateral moraines for Eliot Glacier represent three distinct periods of glacial advance based on their position relative to the current glacier and other diagnostic indicators. Soil profiles of three positions (shoulder, backslope, and footslope) on the distal side of each lateral moraine were described in the field and samples were taken from each horizon for laboratory analyses of pH and particle size. The results of the soil analysis show that the soils developing on the moraine closest to the current glacier are poorly developed and significantly younger than the other two features. The closest moraine likely dates to the Little Ice Age (600-150 YBP) and has soils with an A/C profile and a classification of Andic Cryopsamment. The soils on the middle and furthest moraines from the glacier are similar in the profile sequence (Andic Haplocryepts). Silt bulges were noted in the mid-slope pits. The furthest moraine has deeper horizons and more color development than the middle moraine. Ash layers were found in the backslope soil profile (36-51cm deep) on the middle moraine. Additional lab testing confirms the ash layers originated from Mount Hood, but no date can be assigned. The eruptive history of Mount Hood points to the Timberline eruptive period (1,500 YBP) as a likely candidate for one of the ash deposits. This evidence suggests the middle moraine was actively forming during this period and is intermediate in age between the furthest moraine and the Little Ice Age Moraine; hence, this sequence of moraines indicates three distinct periods of glacial advance in the Neoglacial.

Page generated in 0.0893 seconds