• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Satellite investigations of ice-ocean interactions in the Amundsen Sea sector of West Antarctica

McMillan, Malcolm John January 2012 (has links)
This thesis analyses satellite-based radar data to improve our understanding of the interactions between the Antarctic Ice Sheet and the ocean in the Amundsen Sea Sector of West Antarctica. Over the last two decades, the European Remote Sensing (ERS) Satellites have provided extensive observations of the marine and cryospheric environments of this region. Here I use this data record to develop new datasets and methods for studying the nature and drivers of ongoing change in this sector. Firstly, I develop a new bathymetric map of the Amundsen Sea, which serves to provide improved boundary conditions for models of (1) ocean heat transfer to the ice sheet margin, and (2) past ice sheet behaviour and extent. This new map augments sparse ship-based depth soundings with dense gravity data acquired from ERS altimetry and achieves an RMS depth accuracy of 120 meters. An evaluation of this technique indicates that the inclusion of gravity data improves the depth accuracy by up to 17 % and reveals glaciologically-important features in regions devoid of ship surveys. Secondly, I use ERS synthetic aperture radar observations of the tidal motion of ice shelves to assess the accuracy of tide models in the Amundsen Sea. Tide models contribute to simulations of ocean circulation and are used to remove unwanted signals from estimates of ice shelf flow velocities. The quality of tide models directly affects the accuracy of such estimates yet, due to a lack of in situ records, tide model accuracy in this region is poorly constrained. Here I use two methods to determine that tide model accuracy in the Amundsen Sea is of the order of 10 cm. Finally, I develop a method to map 2-d ice shelf flow velocity from stacked conventional and multiple aperture radar interferograms. Estimates of ice shelf flow provide detail of catchment stability, and the processes driving glaciological change in the Amundsen Sea. However, velocity estimates can be contaminated by ocean tide and atmospheric pressure signals. I minimise these signals by stacking interferograms, a process which synthesises a longer observation period, and enhances long-period (flow) displacement signals, relative to rapidly-varying (tide and atmospheric pressure) ones. This avoids the reliance upon model predictions of tide and atmospheric pressure, which can be uncertain in remote regions. Ice loss from Amundsen Sea glaciers forms the largest component of Antarctica’s total contribution to sea level, yet because present models cannot adequately characterise the processes driving this system, future glacier evolution is uncertain. Observations and models implicate the ocean as the driver of glaciological change in this region and have focussed attention on improving our understanding of the nature of ice-ocean interactions in the Amundsen Sea. This thesis contributes datasets and methods that will aid historical reconstructions, current monitoring and future modelling of these processes.
2

Representing grounding-line dynamics in Antarctic ice-sheet models / Représentation de la dynamique de la ligne d'ancrage dans les modèles cryosphériques antarctiques

Docquier, David 04 October 2013 (has links)
Since the mid-20th century, global average temperatures have dramatically risen mostly due to the increasing amount of greenhouse gas emissions in the atmosphere. The effects of this recent global warming are already evident and could be exacerbated in the near future if no real action is taken. Recent ice loss in West Antarctica, monitored by satellite measurements and other techniques, gives cause for concern in such a warming world. A major part of this loss has been driven by warm water masses penetrating underneath the ice shelves in this region. This has led to a flow acceleration of the inland outlet glaciers and a greater discharge of ice to the ocean. The actual resulting contribution of West Antarctica to sea-level rise is estimated to be around 0.2 mm per year between 1992 and 2011, i.e. about one third of the ice-sheet contribution (Antarctica and Greenland), and is expected to increase in the near future.<p><p>In this thesis, we first clearly demonstrate that modeling grounding-line (the boundary between grounded and floating ice) migration depends on both the numerical approach and the physical approximation of the ice-sheet model used. Ice-sheet models prescribing the ice flux at the grounding line and using appropriate physical level and numerical approach converge to the same steady-state grounding-line position irrespective of the grid size used. However, the transient behavior of those models is less accurate than other models and leads to an overestimated grounding-line discharge. Therefore, they need to be used with particular attention on short time scales. Furthermore, the non-inclusion of vertical shear stress in those models increases the effective viscosity and gives steady-state grounding-line positions further downstream when compared to full-Stokes models.<p><p>The second major finding of this thesis is the high control of geometry (glacier width and bedrock topography) on Thwaites Glacier, one of the fastest-flowing outlet glaciers in West Antarctica. A flowline finite-difference Shallow-Shelf Approximation (SSA) model is applied to the glacier and shows that ice-flow convergence (through width parameterization) slows down the grounding-line retreat when compared to simulations where the width is constant. A new buttressing parameterization is also tested on the glacier and permits a better understanding of this effect. Finally, the three-dimensional version of the model above is applied to Thwaites Glacier and highlights the strong control of lateral variations in bedrock topography on grounding-line migration./Depuis le milieu du 20e siècle, les températures moyennes globales ont fortement augmenté principalement à cause de l'augmentation des émissions de gaz à effet de serre d'origine humaine. Les effets de ce réchauffement global récent sont déjà détectables et pourraient s'accentuer dans un futur proche si aucune mesure réelle n'est prise. La perte récente de glace en Antarctique de l'Ouest, enregistrée par mesures satellites et d'autres techniques, est préoccupante dans un monde qui se réchauffe. Une grande partie de cette perte de glace est due à la pénétration de masses d'eau chaude sous les plateformes de glace flottante dans cette région. Cela engendre une accélération de l'écoulement des glaciers émissaires et une plus grande décharge de glace vers l'océan. Ainsi, la contribution récente à la hausse du niveau de la mer de l'Antarctique de l'Ouest s'élève à environ 0.2 mm par an entre 1992 et 2011, c'est-à-dire près du tiers de la contribution des calottes glaciaires (Antarctique et Groenland). On estime que cette contribution va continuer à augmenter dans le futur proche.<p>Dans cette thèse, nous démontrons clairement que la modélisation de la migration de la ligne d'ancrage (frontière entre glaces posée et flottante) dépend de l'approche numérique et de l'approximation physique du modèle cryosphérique utilisé. Les modèles cryosphériques qui prescrivent le flux glaciaire à la ligne d'ancrage et qui utilisent un niveau de physique et une approche numérique appropriés convergent vers la même position d'équilibre de la ligne d'ancrage quelle que soit la taille de maille utilisée. Cependant, le comportement transitoire de ces modèles est moins précis que d'autres modèles et mène à une surestimation du flux à la ligne d'ancrage. Dès lors, ces modèles doivent être utilisés avec précaution sur de courtes périodes de temps. De plus, la non inclusion des contraintes verticales de cisaillement dans ces modèles augmente la viscosité effective et donne des positions d'équilibre de la ligne d'ancrage plus en aval en comparaison avec les modèles « full-Stokes ».<p>La seconde découverte majeure de cette thèse est le contrôle important exercé par la géométrie (largeur du glacier et topographie du lit rocheux) sur Thwaites Glacier, l'un des glaciers émissaires les plus rapides en Antarctique de l'Ouest. Un modèle « Shallow-Shelf Approximation » (SSA) résolvant les différences finies le long d'une ligne d'écoulement est appliqué au glacier et montre que la convergence de l'écoulement glaciaire (au travers de la paramétrisation de la largeur) ralentit le retrait de la ligne d'ancrage comparé aux simulations où la largeur est constante. Une nouvelle paramétrisation de l'effet arc-boutant est testée sur le glacier et permet de mieux comprendre cet effet. Finalement, la version en trois dimensions du modèle ci-dessus est appliquée à Thwaites Glacier et met en évidence le contrôle important des variations latérales de l'altitude du lit rocheux sur la migration de la ligne d'ancrage. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.3739 seconds