• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 7
  • 2
  • 1
  • 1
  • Tagged with
  • 31
  • 31
  • 20
  • 14
  • 13
  • 12
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Study of Thermal and Mechanical Properties in Mg-Cu-Gd Amorphous Alloys

Hung, Tzu-Hsiang 01 July 2008 (has links)
In this dissertation, the ternary Mg-based amorphous ribbons are characterized and analyzed first. Among the three Mg65Cu25Y10, Mg65Cu25Gd10 and Mg65Ni25Gd10 amorphous ribbons, the Mg65Cu25Gd10 amorphous ribbon exhibits the best thermal properties in terms of the glass forming ability (GFA) indexes, such as 68 K of the supercooled liquid region (£GTx), 29 K of the liquidus region (£GTl), 0.582 of the reduced glass transition temperature (Trg), 0.427 of the £^ value and 0.768 of the £^m value. In spite that the Mg65Cu25Gd10 amorphous ribbons do not show the best performance in mechanical properties, such as micro-hardness value of 231 Hv (2.26 GPa), nano-hardness value is 3.24 GPa (300 Hv) and modulus from nano-indentation of 62.4 GPa, this composition is close to the two prediction compositions of Mg62Cu27Gd11 (the e/a-variant criterion) and Mg67Cu23Gd10 (the binary eutectic clusters criterion). However, among a series of ternary of Mg-Cu-Gd amorphous ribbons, the better overall thermal properties are seen in the Mg54Cu32Gd14 and Mg54Cu31Gd15 amorphous ribbons. In terms of the bulk Mg65Cu25Gd10 amorphous alloys, the 6 mm bulk metallic glass (BMG) rod can be fabricated successfully with minimum porosity. In order to improve the brittle properties of the Mg65Cu25Gd10 BMG rod, there are two methods applied in this study, namely, the intrinsic toughening method by heat treatment and the extrinsic toughening method of adding reinforcements. For the heat treated Mg65Cu25Gd10 BMG rod, both of the one-step and two-steps BMG rods show no distinct plastic deformation in the engineering stress-strain curves, while the micro-hardness and compressive stress are increased from 270 Hv to higher than 300 Hv and from 804 to 830 MPa. But, for the ductile metal-reinforced Mg-based BMG rods, the brittle properties are improved. For the Nb-reinforced Mg65Cu25Gd10 BMG rods, the compressive stress decreases from 804 to 595 MPa and the plastic strain increases from 0 to 0.48% with increasing volume fraction from 0 to 17.3%. But, for Mg65Cu25Gd10 BMG rod reinforced by 21.6% porous Mo, the compressive stress and plastic strain are 821 MPa and 1.63%, respectively. Moreover, for the porous Mo-reinforced Mg58Cu28.5Gd11Ag2.5 BMG rods, the compressive stress increases from 827 to 1111 MPa and the plastic strain increases from 0 to 7.84% with increasing volume fraction from 0 to 25.4%.
2

Dynamical Properties of Biomolecules, Ions and Glass-Forming Liquids: A Theoretical and Computational Study

Wang, Ailun January 2021 (has links)
Thesis advisor: Udayan Mohanty / The conformational dynamics plays a significant role in a wide range of biological systems, from small RNA molecules to the large-scale ribonucleoprotein assemblies, in which ions are found critical and have notable structural and functional impacts. In the glass-forming liquids, the structural dynamics also calls for further investigations and deeper understandings. To this end, using four distinct chapters, this dissertation discusses the ion-related conformational dynamics in various scales of biomolecular systems, as well as the fluctuation effects in the glass-forming liquids. In chapter 1, we investigate the dynamics of ions and water molecules in the outer solvation sphere of a widely studied 58-nucleotide rRNA fragment. Molecular dynamics (MD) simulations with explicit solvent molecules and atomic details are performed for the RNA fragment in ionic solution. We determine all of the association sites and spatial distributions of residence times for Mg2+, K+, and water molecules in those sites. In accordance to the analysis of the dynamics of the RNA fragment, we provide insights into how the dynamics of ions and water molecules are intricately linked with the kinetics of the RNA fragment. In addition, the long-lived sites for Mg2+ ions identified from the simulation agree with the metal ion locations determined in the X-ray structure. The excess ion atmosphere around the RNA fragment is calculated and compared with the experimental measures. The results from this study indicate that the 58-mer rRNA fragment in ionic solution forms a complex polymer that is encased by a fluctuating network of ions and water. In chapter 2, the conformational dynamics of a large-scale ribonucleoprotein assembly, ribosome, is studied with molecular dynamics simulations with a newly developed model that accounts for electrostatic and ionic effects on the biomolecules. In this study, an all-atom structure based model is constructed with explicit representations of non-hydrogen atoms from biomolecules and diffuse ions. Implicit treatment is applied to the solvent molecules with the solvation effect associated with diffuse ions described by effective potentials. Parameters in this model are refined against explicit solvent simulations and experimental measures. This model with refined parameters is able to capture the excess Mg2+ ions for prototypical RNA systems and their dependence on the Mg2+ concentrations. Motivated by this, we apply the model to a bacterial ribosome and find that the position of the extended L1 stalk region can be controlled by the diffuse ions. This simulation also indicated ion-induced long-range interactions between L1 stalk and tRNA, which provides insights into the impact of ions on the functional rearrangements of ribosome. In chapter 3, we focus on the dynamics of the glass-forming liquids. In this study, we generalized the Adam-Gibbs model of relaxation in glass-forming liquids and take into account the fluctuations in the number of molecules inside the cooperative rearranging region. We obtain the expressions of configurational fractions at the glass-transition temperature with and without the fluctuation effect in Adam-Gibbs model, and determine the configurational fraction for several glass-forming liquids at glass-transition temperature in the absence of fluctuation effects. A connection between the β Kohlrausch-Williams-Watts parameters and the configurational fraction at the glass-transition temperature is also reported in this study. In chapter 4, we apply the model developed in chapter 2 to a ribosome structure to investigate the effects of diffuse ions on the aminoacyl-tRNA (aa-tRNA) accommodation process. The aa-tRNA accommodation is a critical step in the tRNA selection process which serves the purpose of protein synthesis in the ribosome. Experimental and computational efforts were made to reveal the mechanism and the energetic properties of the accommodation process, while the effects from diffuse ions on this process remain elusive. To this end, we design and perform MD simulations of ribosome structure with different treatment of electrostatics and diffuse ions in the system. Simulations with various ionic concentrations are also performed to study the concentration effects. The simulation trajectories indicate that diffuse ions can facilitate the aa-tRNA accommodation process and stabilize the accommodated configurations. In addition, we observe that Mg2+ ions play critical roles in stabilizing the accommodated configurations and a few millimolar change of Mg2+ concentration can alter the tendency of the tRNA configurational change during the accommodation process. This result shed light on the investigations of suitable ionic environment for the tRNA selection in the ribosome. It will be fruitful to extend this strategy into the investigations of other conformational rearrangements in the ribosome, such as tRNA translocation and subunit rotation, which will provide us with deeper understanding about the functional mechanism of the ribosome. / Thesis (PhD) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
3

Functional Metallic Glasses

Masood, Ansar January 2012 (has links)
For decades, Metallic Glass, with its isotropic featureless structure while exhibiting outstanding mechanical properties was possible only at a high rate of quenching and with at least one dimension in the submicron regime.  This limitation was overcome with the discovery of Bulk Metallic glasses, BMGs, containing three or more elements following the additional two empirical rules of optimum geometric size differences and negative energy of mixing among the constituent elements. Since then thousands of Fe-, Ni-, Al-, Mg-, Ti- based BMGs have been discovered and comprehensively investigated mainly by groups in Japan and USA. Yet the discovery of new combinations of elements for BMGs is alchemy. We do not know with certainty which element when added will make possible a transition from being a ribbon to a bulk rod.    In this thesis we report a discovery of castable BMGs rods on substitution of Fe by nickel in an alloy of FeBNb which could otherwise have been only melt-spun into ribbons.  For example, we find that substitution of just 6 at.% of Fe raises the glass forming range, GFA, to as much as ∆Tx =40K while the other parameters for GFA like Trg, γ, and δ reach enhanced values 0.57, 0.38, and 1.40 respectively.  Furthermore, the electrical conductivity is found to increase by almost a factor of two.  Magnetically it becomes softer with coercivity 260mOe which further reduces to much lower values on stress relaxation.  Ni does not seem to carry a magnetic moment while it enhances the magnetic transition temperature linearly with Ni concentration. We have investigated the role of Ni in another more stable BMGs based FeBNbY system in which case ∆Tx becomes as large as 94K with comparable enhancement in the other GFA parameters. Due to the exceptional soft magnetic properties, Fe-based bulk metallic glasses are considered potential candidate for their use in energy transferring devices. Thus the effect of Ni substitution on bulk forming ability, magnetic and electrical transport properties have been studied for FeBNb and FeBNbY alloy systems. The role of Ni in these systems is densification of the atomic structure and its consequence. We have exploited the superior mechanical properties of BMGs by fabricating structures that are thin and sustainable.  We have therefore investigated studies on the thin films of these materials retaining their excellent mechanical properties. Magnetic properties of FeBNb alloy were investigated in thin films form (~200-400nm) in the temperature range of 5-300K. These Pulsed Laser deposited amorphous films exhibit soft magnetism at room temperature, a characteristic of amorphous metals, while they reveal a shift in hysteresis loop (exchange anisotropy, HEB=18-25Oe), at liquid helium temperature. When thickness of films is reduced to few nanometers (~8-11nm), they exhibit high transparency (&gt;60%) in optical spectrum and show appreciably high saturation Faraday rotation (12o/μm, λ= 611nm). Thin films (~200-400nm) of Ni substituted alloy (FeNiBNb) reveal spontaneous perpendicular magnetization at room temperature. Spin-reorientation transition was observed as a function of film thickness (25-400nm) and temperature (200-300K), and correlated to the order/disorder of ferromagnetic amorphous matrix as a function of temperature. These two phase films exhibits increased value of coercivity, magnetic hardening, below 25K and attributed to the spin glass state of the system.    Using the bulk and thin films we have developed prototypes of sensors, current meters and such simple devices although not discussed in this Thesis.                                         Ti-based bulk metallic glasses have been attracting significant attention due to their lower density and high specific strength from structural application point of view. High mechanical strength, lower values of young’s modulus, high yield strength along with excellent chemical behaviors of toxic free (Ni, Al, Be) Ti-based glassy metals make them attractive for biomedical applications. In the present work, toxic free Ti-Zr-Cu-Pd-Sn alloys were studied to optimize their bulk forming ability and we successfully developed glassy rods of at least 14mm diameter by Cu-mold casting. Along with high glass forming ability, as-casted BMGs exhibit excellent plasticity. One of the studied alloy (Ti41.5Zr10Cu35Pd11Sn2.5) exhibits distinct plasticity under uniaxial compression tests (12.63%) with strain hardening before failure which is not commonly seen in monolithic bulk metallic glasses. / <p>QC 20120906</p> / Hero-m
4

Preparation, characterization and properties of nitrogen rich glasses in alkaline earth-Si-O-N systems

Sharafat, Ali January 2009 (has links)
Nitrogen rich glasses in the systems Ca-Si-O-N, Sr-Si-O-N and AE-Ca-Si-O-N (AE = Mg, Sr and Ba) have been prepared using a novel glass-synthesis route. The limits of the glass forming regions in the Ca and Sr systems and substitution limits in the AE-Ca-Si-O-N systems have been determined and physical properties of the glasses measured. Transparent glasses were obtained for a few specific compositions in the Ca-Si-O-N and Mg-Ca-Si-O-N systems. All other glasses were found to be translucent gray to opaque black, with the coloration of the glasses depending on the modifier. Small inclusions of Ca/Sr silicides and, in much smaller amounts, elemental Si are believed to be responsible for their poor transparency. A large glass forming region was found for the Ca-Si-O-N system, with glasses retaining up to 58 e/o N and 42 e/o Ca. In comparison, a more narrow glass forming region was found for the corresponding Sr system, with glasses retaining up to 45 e/o N and 39 e/o Sr. The glass formation was found to depend on reaction kinetics and precursors used. A strong exothermic reaction was observed at temperatures 650–1000oC, providing improved conditions for reaction kinetics upon further heating. Physical property measurements for the Ca and Sr glasses showed that glass transition and crystallization temperatures, viscosity, hardness, Young’s modulus and shear modulus depend strongly on the nitrogen content and that these properties increase approximately linearly with increasing nitrogen content. Glass density and refractive index are also dependent on the modifier element and content, in particular for the Sr glasses. Glasses AE-Ca-Si-O-N, with approximately constant (Ca/AE): Si:O:N ratios, showed that mixed modifier glass properties, such as density, molar volume, glass transition temperature, hardness, refractive index can be related to the effective cation field strength of the modifiers.
5

Glass Forming Ability and Relaxation Behavior of Zr Based Metallic Glasses

Kamath, Aravind Miyar 2011 May 1900 (has links)
Metallic glasses can be considered for many commercial applications because of the higher mechanical strength, corrosion and wear resistance when compared to crystalline materials. To consider them for novel applications, the challenge of preparing metallic glasses from the liquid melt phase and how the properties of metallic glasses change due to relaxation need to be understood better. The glass forming ability (GFA) with variation in composition and inclusion of different alloying elements was studied by using thermal techniques to determine important GFA indicators for Zr-based bulk metallic glasses (BMG). The effect of alloying elements, annealing temperature and annealing time on the thermal and structural relaxation of the BMGs was studied by using an annealing induced relaxation approach. The thermal relaxation was studied by measuring specific heat of the samples using differential scanning calorimeter (DSC) and calculating the enthalpy recovery on reheating in the BMG samples. The structural relaxation was also studied by using extended X-ray absorption fine structure (EXAFS) technique on the as-obtained and relaxed samples. The effects of alloying elements and annealing on electrical resistance were studied by using a two point probe. From the study, it was found that the currently used GFA indicators are inadequate to fully capture and identify the best GFA BMGs. The fragility (beta) of the melt is a new criterion that has been proposed to measure and analyze GFA. The enthalpy relaxation of Zrbased BMGs was found to follow a stretched exponential function, and the parameters obtained showed the BMGs used in the current study are strong glass formers. EXAFS studies showed variations in the structure of BMGs with changes in alloying elements. Furthermore, alloying elements were found to have an effect on the structure of the relaxed BMGs. The resistance of BMGs was found to decrease with relaxation which can be attributed to short range order on annealing.
6

Predictive Modeling for Developing Novel Metallic Glass Alloys

Ward, Logan Timothy 30 August 2012 (has links)
No description available.
7

Solidification And Crystallization Behaviour Of Bulk Glass Forming Alloys

Aybar, Sultan 01 September 2007 (has links) (PDF)
The aim of the study was to investigate the crystallization kinetics and solidification behaviour of Fe60Co8Mo5Zr10W2B15 bulk glass forming alloy. The solidification behaviour in near-equilibrium and non-equilibrium cooling conditions was studied. The eutectic and peritectic reactions were found to exist in the solidification sequence of the alloy. The bulk metallic glass formation was achieved by using two methods: quenching from the liquid state and quenching from the semi-state. Scanning electron microscopy, x-ray diffraction and thermal analysis techniques were utilized in the characterization of the samples produced throughout the study. The choice of the starting material and the alloy preparation method was found to be effective in the amorphous phase formation. The critical cooling rate was calculated as 5.35 K/s by using the so-called Barandiaran and Colmenero method which was found to be comparable to the best glass former known to date. The isothermal crystallization kinetics of the alloy was studied at temperatures chosen in the supercooled liquid region and above the first crystallization temperature. The activation energies for glass transition and crystallization events were determined by using different analytical methods such as Kissinger and Ozawa methods. The magnetic properties of the alloy in the annealed, amorphous and as-cast states were characterized by using a vibrating sample magnetometer. The alloy was found to have soft magnetic properties in all states, however the annealed specimen was found to have less magnetic energy loss as compared to the others.
8

Investigations On Bulk Glass Forming Ability Of Titanium Based Multicomponent Alloys

Suer, Sila 01 June 2008 (has links) (PDF)
The aim of this study is to investigate the bulk glass forming ability (BGFA) of Ti-based alloy systems. These investigations were carried out in two main parts that are complementary to each other: theoretical and experimental. For theoretical studies, which are based on electronic theory of alloys in pseudopotential approximation, Ti-Zr, Ti-Co and Ti-Cu alloys were chosen as the binary systems. Alloying element additions were performed to each binary for the investigation of the BGFA of multicomponent Ti-based alloys. Among the three studied binary systems, Ti-Cu was found to exhibit better BGFA, and Mn, Al and Ni elements were found to be suitable for improving the BGFA of Ti-Cu binary alloy system. BGFA of Ti-Cu binary and Ti-Cu-(Mn, Al, Ni) multicomponent alloys were investigated with the experimental studies that were carried out with performing arc melting and centrifugal casting operations. The characterizations of these alloys were done with scanning electron microscopy, X-ray diffraction analysis and differential scanning calorimetry. Ti60Cu35Mn5, Ti60Cu35Al5 and Ti60Cu35Ni5 alloys were produced and characterized as examples for ternary systems. Among them, Ti60Cu35Mn5 system was found to have better indications regarding to BGFA. Therefore, it was chosen as the main composition and multicomponent alloys of Ti59Cu35Mn5Al1, Ti59Cu35Mn5Ni1 and Ti58Cu35Mn5Al1Ni1 were synthesized and characterized.
9

Nano-scale Phase Separation And Glass Forming Ability Of Iron-boron Based Metallic Glasses

Aykol, Muratahan 01 September 2008 (has links) (PDF)
This study is pertinent to setting a connection between glass forming ability (GFA) and topology of Fe-B based metallic glasses by combining intimate investigations on spatial atomic arrangements conducted via solid computer simulations with experimentations on high GFA bulk metallic glasses. In order to construct a theoretical framework, the nano-scale phase separation encountered in metallic glasses is investigated for amorphous Fe80B20 and Fe83B17 alloys via Monte Carlo equilibration and reverse Monte Carlo simulation. The phenomenon is identified regarding three topological aspects: 1) Pure Fe-clusters as large as ~0.9 nm and Fe-contours with ~0.72 nm thickness, 2) Fe-rich highly deformed body centered cubic regions, 3) B-centered prismatic units with polytetrahedral order forming distinct regions of high and low coordinations are found. All topological aspects are compiled into a new model called Two-Dimensional Projection Model for predicting contributions to short and medium range order (MRO) and corresponding spacing relations. The outcome geometrically involves proportions approximating golden ratio. After successfully producing soft magnetic Fe-Co-Nb-B-Si based bulk metallic glass and bulk nanocrystalline alloys with a totally conventional route, influences of alloying elements on structural units and crystallization modes are identified by the developed model and radial distributions. While Co atoms substitute for Fe atoms, Nb and Si atoms deform trigonal prismatic units to provide local compactions at the outset of MRO. Cu atoms alter the type of MRO which resembles crystalline counterparts and accompanying nanocrystals that precipitate. The GFA can be described by a new parameter quantifying the MRO compaction, cited as &amp / #934 / .
10

Theoretical And Experimental Investigation Of Bulk Glass Forming Ability In Bulk Amorphous Alloy Systems

Ayas, Can 01 January 2005 (has links) (PDF)
In this study molecular dynamics simulation program in NVT ensemble using Velocity Verlet integration was written in order to investigate the glass forming ability of two metallic systems. The Zn-Mg system, one of the frontiers of simple metal-metal metallic glasses and Fe-B, inquiring attention due to presence of many bulk glass forming alloy systems evolved from this binary with different alloying element additions. In addition to this, atomistic calculations on the basis of ordering were carried out for both Zn-Mg and Fe-B systems. Ordering energy values are calculated using electronic theory of alloys in pseudopotential approximation and elements which increase the ordering energy between atoms were determined. The elements which increase the ordering energy most were selected as candidate elements in order to design bulk amorphous alloy systems. In the experimental branch of the study centrifugal casting experiments were done in order to see the validity of atomistic calculations. Industrial low grade ferroboron was used as the master alloy and pure element additions were performed in order to constitute selected compositions. Fe62B21Mo5W2Zr6 alloy was successfully vitrified in bulk form using nearly conventional centrifugal casting processing. Specimens produced were characterized using SEM, XRD, and DSC in order to detect the amorphous structure and also the crystalline counterpart of the structure when the cooling rate is lower. Sequential peritectic and eutectic reaction pattern was found to be important for metallic glasses which can be vitrified in bulk forms with nearly conventional solidification methods.

Page generated in 0.1353 seconds