Spelling suggestions: "subject:"glassceramics -- bechanical properties"" "subject:"glassceramics -- amechanical properties""
1 |
Synthesis and characterization of in situ whisker-reinforced glass-ceramicsLee, Kyoung-Ho 19 June 2006 (has links)
The effects of in situ Ti0₂ whisker reinforcement on mechanical and thermal properties of glass-ceramics in the Li₂O-Al₂0₃-P₂0₆-Si0₂ system were investigated.
When Ti0₂ whiskers, having an average aspect ratio of 28, are precipitated from the glass-ceramic matrix, (Li<sub>0.4</sub>,Ca<sub>0.05</sub>)AI(Si<sub>0.75</sub>,P<sub>0.5</sub>)<sub>04.5</sub>, flexural strength is improved from 72 to 134 MPa. Fracture toughness, K<sub>Ic</sub>, is increased from the 1.1 to 1.6 MPa·m<sup>1/2</sup> due to crack deflection by the Ti0₂ whiskers. In situ Ti0₂ whisker-reinforced glass-ceramic exhibits rising fracture resistance, K<sub>R</sub>, with increasing crack extension. The fracture resistance, K<sub>R</sub>, is increased from 1.89 to 2.5 MPa·m<sup>1/2</sup> over the crack extension range range of 40 to 200 μm. The composite shows a narrow failure strength distribution compared to the glass-ceramic without Ti0₂ whisker precipitation. The coefficient of thermal expansion (CTE) changes from -2.8x10⁻⁷/"C to -1.7xl0⁻⁷/°C due to the precipitation of Ti0₂ phase which has a positive CTE (7.3xl0⁻⁶/°C).
With the matrix composition, (Li<sub>0.41</sub>,Mg<sub>0.035</sub>)AI(Si<sub>0</sub>0.48</sub>,P<sub>O.52</sub>)O₄, a three-fold increase in flexural strength was observed with a Ti0₂ content of 12 wt%. CTE value of the composite increases linearly from a negative to a positive value with increasing Ti0₂ content up to 12 wt%. The in situ composite containing 8-10 wt% Ti0₂ exhibits near zero CTE values up to l000°C. / Ph. D.
|
2 |
Damage analysis and mechanical response of as-received and heat-treated Nicalon/CAS-II glass-ceramic matrix compositesLee, Shin Steven 03 October 2007 (has links)
Experimental results of damage development in and mechanical response of heat-treated NicaloniCAS-II laminates subjected to monotonic flexure and axial loading and to cyclic tensile loading are reported. The specimens were subjected to post-processing heat treatments at 900°, 1000°, and l100°C in air for 100 hours. Changes at the fiber/matrix interface/interphase due to post-processing heat treatments were also characterized. The combined effect of fiber debonding and transverse matrix cracking in both 90° and 0° plies plays an important role in damage development in [0/90]₄₅ Nicalon/CAS-II laminates, especially in developing the secondary damage modes such as longitudinal matrix cracking and delamination. Frictional wear effects found in cyclically loaded specimens may be responsible for the observed temperature profiles during the intermediate stage of fatigue life. It is also believed that frictional wear is critical to the failure of notch sensitive fibers. Different damage modes such as "brittle" matrix crack propagation and "quasi-brittle" matrix crack propagation were observed in heat-treated specimens. Results obtained from microanalysis using an analytical scanning transmission electron microscope equipped with an energy dispersive spectrometer, and microindentation indicated that the changes of damage and failure modes were directly related to the changes of characteristics at the fiber/matreix interface/interphase. / Ph. D.
|
Page generated in 0.111 seconds