• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 8
  • 5
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 101
  • 101
  • 101
  • 31
  • 16
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • 11
  • 10
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Vliv formulačních faktorů na vlastnosti nanočástic s terbinafinem. / Influence of formulation factors on the characteristics of terbinafine loaded nanoparticles.

Barák, Vlastimil January 2019 (has links)
CHARLES UNIVERSITY FACULTY OF PHARMACY IN HRADEC KRÁLOVÉ DEPARTMENT OF PHARMACEUTICAL TECHNOLOGY Author: Vlastimil Barák Title of Diploma thesis The influence of formulation factors on the characteristics of terbinafine loaded nanoparticles Supervisor: PharmDr. Eva Šnejdrová, Ph.D. Consultant: Mgr. Juraj Martiška The diploma thesis is focused on biodegradable polymer nanoparticles loaded by terbinafine based on the copolymer of glycolic and lactic acid branched on polyacrylic acid. The nanoprecipitation method was employed, and the influence of formulation factors on nanoparticle characteristics was studied. The following formulation factors were the concentration of the polymer, the amount of terbinafine, and the concentration of surfactant. Nanoparticles of 120 nm to 300 nm were obtained depending on the preparation conditions. The nanoparticle polydispersity was in all cases from 0.080 to 0.230. The prepared nanoparticles were stable, as evidenced by zeta potential values above 38 mV. A positive zeta potential is desirable for dermal and mucosal adhesion in the topical and ocular application of nanoparticles with terbinafine. The amount of polymer used to form nanoparticles has the greatest effect on particle size. With increasing polyester concentration in the internal phase, the size of the...

Page generated in 0.1337 seconds