• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 7
  • 3
  • Tagged with
  • 15
  • 15
  • 15
  • 11
  • 8
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Liquid phase separation and glass formation of Pd-Si alloy.

January 1997 (has links)
Hong Sin Yi, Grace. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1997. / Includes bibliographical references (leaves 50-51). / Acknowledgments / Abstract / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Metallic Glass and its application --- p.1 / Chapter 1.2 --- Glass Forming Ability (GFA) --- p.2 / Chapter 1.3 --- Equilibrium Phase --- p.3 / Chapter 1.4 --- Nucleation and Growth --- p.6 / Chapter 1.5 --- Spinodal Decomposition --- p.8 / Chapter 1.6 --- Morphology Comparison between Nucleation and Growth and Spinodal --- p.13 / Figures --- p.14 / References --- p.24 / Chapter Chapter 2 --- Experimental Method / Experimental Method --- p.25 / Figure --- p.29 / References --- p.30 / Chapter Chapter 3 --- Metastable liquid miscibility gap in Pd-Si and its glass forming ability / Introduction --- p.32 / Experimental --- p.33 / Results --- p.34 / Discussion --- p.36 / Figures --- p.40 / References --- p.49 / Bibliography --- p.50
12

Thermal And Electrical Properties Of Silver And Iodine Doped Chalcogenide Glasses

Pattanayak, Pulok 02 1900 (has links)
Silver containing chalcogenide glasses have been extensively studied during the last few decades; the main interest in these materials being their electrical conductivity which changes by several orders of magnitude upon silver doping. Glassy chalcogenides doped with silver have applications in optical elements, gratings, micro-lenses, waveguides, bio & chemical sensors, solid electrolytes, batteries, etc. Chalcohalide glasses have become important in the recent times, from both scientific & technological points of view, due to the interesting properties exhibited by these glasses such as the transparency in the infrared region, the stability against devitrification, solubility of rare earth elements, etc. In this thesis work, the thermal properties and electrical switching behavior of certain silver and iodine doped chalcogenide glasses have been investigated The thesis contains five chapters: Chapter 1: This chapter is an introduction to the fundamental aspects of amorphous semiconductors with a particular reference to chalcogenide glasses. The advantages and applications of chalcogenide glasses are also described. Chapter 2: The methods of preparation and characterization of the glasses investigated are described in this chapter. Also, the details of the experiments undertaken, namely temperature modulated Alternating Differential Scanning Calorimetry (ADSC), electrical switching analysis, Photo-thermal Deflection Spectroscopy (PDS), etc, are outlined. Chapter 3: In this chapter, the thermal behavior and electrical switching of silver doped Ge-Se and As-Se chalcogenide glasses are described. Bulk, melt-quenched Se-rich Ge0.15Se0.85-xAgx glasses have been found to be microscopically phase separated and composed of Ag2Se clusters and GeSe2-Se network. When the silver concentration exceeds 10 atom %, the Ag2Se clusters embedded in the GeSe2-Se network percolate. The signature of this percolation threshold is clearly observed as the sudden appearance of two exothermic crystallization peaks in ADSC runs. Density, molar volume and micro hardness studies also strongly support the view of a percolation transition. The super-ionic conduction observed earlier in these glasses at higher silver proportions, is likely to be connected with the silver phase percolation. It has been found that Ge0.15Se0.85-xAgx glasses of lower silver concentration (x = 0.07 and 0.08) do not exhibit electrical switching at voltages up to 1100 V. A negative resistance behavior and threshold type electrical switching is seen in Ge0.15Se0.85-xAgx samples with x 0.09. Also, fluctuations are observed in the I-V characteristics of these samples, which have been attributed to the difference in thermal conductivities between the Ag2Se inclusions and the Ge-Se base glass. A sharp drop has been observed in the switching voltage with Ag concentration which is due to the more metallic nature of silver and the presence of Ag+ ions. Further, the saturation in the decrease of VT around x = 0.10, is related to silver phase percolation in these glasses. Bulk As20Se80-xAgx glasses (0 x 15) have been found to exhibit two endothermic glass transitions and two exothermic crystallization reactions on heating. Based on which it is suggested that As20Se80-xAgx glasses are also microscopically phase separated, containing Ag2Se phases embedded in an As-Se backbone. The occurrence of microscopic phase separation in As20Se80-xAgx glasses is also confirmed by SEM studies. With increasing silver concentration, the Ag2Se phase percolates in the As-Se matrix, with a well-defined percolation threshold at x = 8. This silver phase percolation is exemplified by sudden jumps in the composition dependence of the second crystallization peak and non-reversible heat-flow, Hnr obtained at the second glass transition reaction of As20Se80-xAgx glasses. The super-ionic conduction observed earlier in these glasses at higher silver proportions, is likely to be associated with the observed silver phase percolation. Like Ge0.15Se0.85-xAgx glasses, As20Se80-xAgx glasses also exhibit threshold type electrical switching with fluctuations in the I-V characteristics; these fluctuations have been attributed to the difference in thermal conductivities between the Ag2Se inclusions and the As-Se base glass. A sharp drop has been observed in the switching voltage with Ag concentration which is due to the more metallic nature of silver and the presence of Ag+ ions. Further, the saturation in the decrease of VT around x = 8, is found to be related to silver phase percolation in these glasses, which has been proposed on the basis of ADSC experiments. Chapter 4: The chapter 4 deals with thermal studies, electrical switching investigations and Photo-thermal Deflection Spectroscopic (PDS) measurements on certain Ge-Te-I and As-Te-I chalcohalide glasses. It has been found that the compositional variation of the glass transition temperature of Ge22Te78-xIx glasses, obtained by Alternating Differential Scanning Calorimetry (ADSC), exhibits a broad hump around 5 atom % of iodine. Further, a sharp minimum is seen in the composition dependence of non-reversing enthalpy (Hnr) of Ge22Te78-xIx glasses at x = 5, which is suggestive of a thermally reversing window at this composition. Electrical switching studies on Ge22Te78-xIx glasses indicate that these glasses exhibit memory type electrical switching. At lower iodine concentrations, a decrease is seen in switching voltages with an increase in iodine content (in comparison with the base Ge22Te78 glass), which is due to the decrease in network connectivity. The increase seen in switching voltages of Ge22Te78-xIx glasses at higher iodine contents, suggests that the influence of the metallicity is stronger at higher iodine proportions. It is also interesting to note that the composition dependence of the threshold voltages shows a slope change at x = 5, the inverse rigidity percolation threshold of the Ge22Te78-xIx system. . Further, it is found that the thermal diffusivities ( D) of Ge22Te78-xIx glasses decrease with the increase in iodine content, which has been understood on the basis of fragmentation of the Ge-Te network with the addition of iodine. Also, a cusp is seen in the composition dependence of thermal diffusivity at the composition x = 5 (average coordination number, r = 2.39), which has been identified to be the inverse rigidity percolation threshold of the system at which the network connectivity is lost. ADSC studies on As45Te55-xIx chalcohalide glasses (3 x 10) reveal that there is not much variation in the glass transition temperature of As45Te55-xIx glasses, even though there is a wide variation in r . Based on this observation we suggest that the variation in glass transition temperature of network glasses is dictated by the variation in average bond energy rather than the average coordination number. Further, the non-reversing enthalpy Hnr of As45Te55-xIx glasses is found to exhibit a sharp minimum at the composition x = 6. A broad hump is also seen in glass transition and crystallization temperatures in the composition range 5 x 7. These results indicate a narrow thermally reversing window in As45Te55-xIx glasses around the composition x = 6. As45Te55-xIx glasses have been found to exhibit a memory to threshold type change in switching behavior with iodine content (x 6), which has been understood on the basis of the sharp increase in thermal diffusivity above x = 6. It is also observed that the switching voltages do not change appreciably with composition/average coordination number. Though no pronounced signature of a stiffness transition is seen in the variation with composition of VT, fluctuations are seen in the switching voltages around x = 6, the composition corresponding to the sharp thermally revering window. PDS studies indicate that the thermal diffusivities () of As45Te55-xIx chalcohalide exhibit a sharp minimum at the composition x = 6. This result reasserts the presence of a sharp thermally reversing window in As45Te55-xIx glasses around the composition x = 6. Chapter 5: The significant results obtained in the present thesis work have been summarized in this chapter. Further, the scope for future work is also presented.
13

Development Of Instrumentation For Electrical Switching Studies And Investigations On Switching And Thermal Behavior Of Certain Glassy Chalcogenides

Prashanth, S B Bhanu 04 1900 (has links)
The absence of long-range order in glassy chalcogenides provides the convenience of changing the elemental ratios and hence the properties over a wide range. The interesting properties exhibited by chalcogenide glasses make them suitable materials for Phase Change Memories (PCM) and other applications such as infrared optical devices, photo-receptors, sensors, waveguides, etc. One of the most remarkable properties of chalcogenides is their electrical switching behavior. Reversible (threshold type) or irreversible (memory type) switching from a high resistance OFF state to a low resistance ON state in glassy chalcogenides occurs at a critical voltage called the threshold/switching voltage (VT). Investigations on the switching behavior and its composition dependence throw light on the local structural effects of amorphous chalcogenide semiconductors and also help us in identifying suitable samples for PCM applications. Thermal analysis by Differential Scanning Calorimetry (DSC) has been extensively used in glass science, particularly for measurements of thermal parameters such as enthalpy of relaxation, specific heat change, etc., near glass transition. Quite recently, the conventional DSC has been sophisticated by employing a composite temperature profile for heating, resulting in the Temperature Modulated DSC (TMDSC) or Alternating DSC (ADSC). Measurements made using ADSC reveal thermal details with enhanced accuracy and resolution, and this has lead to a better understanding of the nature of glass transition. The thermal parameters obtained using DSC/ADSC are also vital for understanding the electrical switching behavior of glassy chalcogenides. The motivation of this thesis was twofold: The first was to develop a novel, high voltage programmable power supply for electrical switching analysis of samples exhibiting high VT, and second to investigate the thermal and electrical switching behavior of certain Se-Te based glasses with Ge and Sb additives. The thesis contains seven chapters: Chapter 1: This chapter provides an overview of amorphous semiconductors (a-SC) with an emphasis on preparation and properties of glassy chalcogenides. The various structural models and topological thresholds of a-SC are discussed with relations to the glass forming ability of materials. The electronic band models and defect states are also dealt with. The essentials of electrical switching behavior of chalcogenides are discussed suggesting the electronic nature of switching and the role of thermal properties on switching. Chapter 2: The second chapter essentially deals with theory and practice of the experimental techniques adopted in the thesis work. The details of the melt-quenching method of synthesizing glassy samples are provided. Considering the importance, the theory of thermal analysis by DSC & ADSC, are discussed in detail, highlighting the advantages of the latter method adopted in the thesis work. The instrumentation and electronics, developed and used for electrical switching analysis are also introduced at a block diagram level. Finally, the methods used for structural analysis are briefed. Chapter 3: This chapter is dedicated to the design and development details of the programmable High Voltage dc Power Supply (HVPS: 1750 V, 45 mA) undertaken in the thesis work. The guidelines used for power supply topology selection, the specifications and block diagram of the HVPS are provided in that sequence. The operation of the HVPS is discussed using the circuit diagram approach. The details of software control are also given. The performance validations of the HVPS, undertaken through voltage & current regulation tests, step & frequency response tests are discussed. Finally, the sample-test results on the electrical switching behavior of representative Al20As16Te64 and Ge25Te65Se10 samples, obtained using both the current & voltage sweep options of the HVPS developed are illustrated. Chapter 4: Results of the thermally induced transitions governed by structural changes which are driven by network connectivity in the GexSe35-xTe65 (17 ≤ x ≤ 25) glasses, as revealed by ADSC experiments, are discussed in this chapter. It is found that the GexSe35-xTe65 glasses with x ≤ 20 exhibit two crystallization exotherms (Tc1 & Tc2), whereas those with x ≥ 20.5, show a single crystallization reaction upon heating (Tc). The glass transition temperature of GexSe35-xTe65 glasses is found to show a linear, but not-steep increase, indicating a progressive and not an appreciable build-up in network connectivity with Ge addition. The exothermic reaction at Tc1 has been found to correspond to the partial crystallization of the glass into hexagonal Te and the reaction at Tc2 is associated with the additional crystallization of rhombohedral Ge-Te phase. It is also found that the first crystallization temperature Tc1 of GexSe35-xTe65 glasses of lower Ge concentrations (with x ≤ 20), increases progressively with Ge content and eventually merges with Tc2 at x = 20.5 (<r> = 2.41); this behavior has been understood on the basis of the reduction in Te-Te bonds of lower energy and an increase in Ge-Te bonds of higher energy, with increasing Ge content. Chapter 5: This chapter deals with the electrical switching studies on GexSe35-xTe65 (17 ≤ x ≤ 25) glasses, with an emphasis on the role of network connectivity/rigidity on the switching behavior. It is found that the switching voltage (VT) increases with Ge content, exhibiting a sudden jump at x=20, the Rigidity Percolation Threshold (RPT) of the system. In addition, the switching behavior changes from memory to threshold type at the RPT and the threshold switching is found to be repetitive for more than 1500 cycles. Chapter 6: In this chapter, the results of thermal analysis (by ADSC) and electrical switching investigations on SbxSe55-xTe45 (2 ≤ x ≤ 9) are discussed. It is found that the addition of trivalent Sb contributes very meagerly to network growth but directly affects the structural relaxation effects at Tg. Further, SbxSe55-xTe45 glasses exhibit memory type electrical switching, which is understood on the basis of poor thermal stability of the samples. The metallicity factor is observed to outweigh the network factor in the composition dependence of VT of SbxSe55-xTe45 glasses. Chapter 7: The chapter 7 summarizes the results obtained in the thesis work and provides the scope for future work. The references are cited in the text along with the first author’s name and year of publication, and are listed at the end of each chapter in alphabetical order.
14

Investigations On Certain Tellurium Based Bulk Chalcogenide Glasses And Amorphous Chalcogenide Films Having Phase Change Memory (PCM) Applications

Das, Chandasree 09 1900 (has links) (PDF)
Chalcogenide glass based Phase Change Memories (PCMs) are being considered recently as promising alternatives to conventional non-volatile Random Access Memories (NVRAMs). PCMs offer high performance & low power consumption, in addition to other advantages, such as high scalability, high endurance and compatibility with complementary metal oxide semiconductors (CMOS) technologies. Basically PCM is a resistance variable non-volatile memory in which the memory bit state is defined by the resistance of the material. In this case, the initial ‘OFF’ state (logic zero) corresponds to the high resistance amorphous state and the logic 1 or ‘ON’ state corresponds to low resistance crystalline state. The present thesis work deals with electrical, thermal, mechanical and optical characterization of certain tellurium based chalcogenide glasses in bulk and thin film form for phase change memory applications. A comparative study has been done on the electrical switching behavior of Ge-Te-Se & Ge-Te-Si amorphous thin film samples with their bulk counterparts. Further, electrical switching and thermal studies have been undertaken on bulk Ge-Te-Bi and Ge-Te-Sn series of samples. The composition dependence of switching voltages of bulk and thin film samples studied has been explained on the basis of different factors responsible for electrical switching. The thesis contains ten chapters: Chapter 1 deals with a brief introduction on chalcogenides and their applicability in phase change memories. The glass transition phenomenon, synthesis of chalcogenide alloys, different structural models of amorphous semiconductors and electrical switching behavior are also discussed in detail in this chapter. Further, a brief description of optical and mechanical properties along with the principles of few characterization techniques used is discussed. Also, a brief overview on PCM application of chalcogenides is presented. The second chapter provides the details of various experimental techniques used to measure electrical, thermal, optical and mechanical properties of few tellurium based chalcogenide glassy systems. In the third chapter, the electrical switching behavior of amorphous Al23Te77 thin film devices, deposited in co-planar geometry, has been discussed. It is found that these samples exhibit memory type electrical switching. Scanning Electron Microscopic studies show the formation of a crystalline filament in the electrode region which is responsible for switching of the device from high resistance OFF state to low resistance ON state. The switching behavior of thin film Al-Te samples is found to be similar to that of bulk samples, with the threshold fields of bulk samples being higher. This has been understood on the basis of higher thermal conductance in bulk, which reduces the Joule heating and temperature rise in the electrode region. Electrical switching and thermal behavior of bulk; melt quenched Ge18Te82-xBix glasses (1 ≤ x ≤ 4) are presented in chapter 4. Ge-Te-Bi glasses have been found to exhibit memory type electrical switching behavior, which is in agreement with the lower thermal diffusivity values of these samples. A linear variation in switching voltages (also known as threshold voltages) (Vt) has been found with increase in thickness. The switching voltages have been found to decrease with an increase in temperature which is due to the decrease in the activation energy for crystallization at higher temperatures. Further, Vt of Ge18Te82-xBix glasses have been found to decrease with the increase in Bi content, indicating that in the Ge-Te-Bi system, the resistivity of the additive has a stronger role to play in the composition dependence of Vt, in comparison with the network connectivity and rigidity factors. In addition, the composition dependence of crystallization activation energy has been found to show a decrease with an increase in Bi content. X-ray diffraction studies on thermally crystallized samples reveal the presence of hexagonal Te, GeTe and Bi2Te3 phases. The fifth chapter deals with the electrical switching studies and optical band gap measurements on GexSe35-xTe65 (17 ≤ x ≤ 23) amorphous thin film samples. These thin film samples coated with sandwich geometry are found to switch with very low voltages as compared to bulk samples of the same chalcogenide glasses. The switching voltages and optical band gap are found to increase with the addition of Ge at the expense of Se. High structural cross linking with progressive addition of 4-fold coordinated Ge atoms could be the one of the reasons of increasing switching voltage and stronger Ge-Se bond strength could be the reason of increasing band gap for these chalcogenide glasses. In chapter 6, electrical switching studies on amorphous Ge15Te85-xSix (1 ≤ x ≤ 6) thin film samples have been described and the results are compared with their bulk counterparts. Similar trend has been found for both bulk and film samples when the threshold field is varied with composition. Optical band gap has been measured as a function of composition for these films, which also shows a behavior similar to that of switching voltages. The increasing trend in the variation with composition of electrical switching voltages and optical band gap are due to the increase in network connectivity and rigidity as Si atoms are incorporated into the Ge-Te system. Chapter 7 summarizes the electrical switching and glass forming ability of the Ge-Te-Sn glasses of two different composition tie-lines, namely Ge15Te85-xSnx and Ge17Te83-xSnx. Glasses belonging to both the series have been found to exhibit memory type of electrical switching behavior. The thickness dependence of threshold voltages is also found to support the memory switching behavior of the system. Further, ADSC studies are undertaken to explore the thermal behavior of these glasses which indicates that the crystallization tendency increases as Sn concentration is increased in the Ge-Te network. XRD studies done on two samples from both the series, reveal the fact that Sn atoms do not take part actively to enhance the network connectivity and rigidity. The composition dependence of crystallization temperature, metallicity factor and results of XRD studies are put together to explain the variation with composition of threshold voltages for both the series of samples. In chapter 8, investigations on the electrical switching behavior of Ge15Te85-xSnx (1 ≤ x ≤ 5) and Ge17Te83-xSnx (1 ≤ x ≤ 4) amorphous thin films have been discussed. Both the series of samples have been found to exhibit memory type of electrical switching behavior. The composition dependence of threshold voltage shows a decreasing trend, which has been explained on the basis of the Chemically Ordered Network (CON) model, bond strength and the metallicity factor. The optical band gap variation of both the series also exhibits a similar decreasing trend with composition. The observed behavior has been understood on the basis of higher atomic radius of Sn atom than Ge atom, which makes the energy difference between bonding and anti bonding state less at band edge. Chapter 9 deals with the nano-indentation studies on Ge15Te85-xSix (0 ≤ x ≤ 9) bulk glasses. The composition dependence of young’s modulus and hardness is studied systematically in this glassy system. The density of the samples of different compositions has also been measured, which strongly supports the variation of Young’s Modulus and hardness with composition. The composition dependence of mechanical properties of Ge-Te-Si samples has been understood on the basis of the presence of an intermediate phase and a thermally reversing window in this glassy system. A summary of the significant results obtained in the present thesis work is presented in the last chapter along with the scope for future work.
15

Electrical Switching And Thermal Studies On Certain Ternary Telluride Glasses With Silicon Additive And Investigations On Their Suitability For Phase Change Memory Applications

Anbarasu, M 10 1900 (has links)
The Phase Change Memories (PCM) based on chalcogenide glasses are being considered recently as a possible replacement for conventional Non Volatile Random Access Memories (NVRAM). The main advantages of chalcogenide phase change memories are their direct write/overwrite capability, lower voltages of operation, large write/erase cycles, easiness to integrate with logic, etc. The phase change random access memories work on the principle of memory switching exhibited by chalcogenide glasses during which a local structural change (between amorphous and crystalline states) occurs due to an applied electric field. The development of newer phase change materials for NVRAM applications is based on synthesizing newer glass compositions and investigating their electrical switching characteristics by applying current/voltage pulses of different waveforms. The thermal studies on chalcogenide glasses which provide information about thermal stability, glass forming ability, etc., are also important while selecting a chalcogenide glass for PCM applications. The present thesis work deals with electrical switching and thermal studies on certain silicon based ternary telluride glasses (As-Te-Si, Ge-Te-Si and Al-Te-Si). The effect of network topological thresholds on the composition dependence of switching voltages and thermal parameters such as glass transition temperature, specific heat capacity, non-reversing enthalpy, etc., of these glasses has been investigated. The first chapter of the thesis provides an introduction to various properties of chalcogenide glasses, including their applications in phase change memories. The fundamental aspects of amorphous solids such as glass formation, glass transition, etc., are presented. Further, the concepts of rigidity percolation and self organization in glassy networks and the influence of local structural effects on the properties of glassy chalcogenides are discussed. Also, a brief history of evolution of phase change memories is presented. The second chapter deals with the experimental techniques employed in this thesis work; for sample preparation and for electrical switching studies, Alternating Differential Scanning Calorimetry (ADSC), Raman spectroscopy, NMR spectroscopy, etc. The third chapter discusses the electrical switching and thermal studies on As30Te70-xSix (2 ≤ x ≤ 22) and As40Te60-xSix (2 ≤ x ≤ 17) glasses. The composition dependence of electrical switching voltage (VT) and thermal parameters such as glass transition temperature (Tg), crystallization temperature (Tc), thermal stability (Tc-Tg), etc., reveals the occurrence of extended rigidity percolation and chemical thresholds in As30Te70-xSix and As40Te60-xSix glasses. Chapter 4 presents the electrical switching and thermal studies on Ge15Te85-xSix glasses (2 ≤ x ≤ 12). These glasses have been found to exhibit memory type electrical switching. While Ge15Te85-xSix glasses with x ≤ 5 exhibit a normal electrical switching, an unstable behavior is seen in the I-V characteristics of Ge15Te85-xSix glasses with x > 5 during the transition to ON state. Further, the switching voltage (VT) and initial resistance (R) are found to increase with addition of Si, exhibiting a change in slope at the rigidity percolation threshold of the Ge15Te85-xSix system. The ADSC studies on these glasses indicate the presence of an extended stiffness transition and a thermally reversing window in Ge15Te85-xSix in the composition range of 2 ≤ x ≤ 6. The fifth chapter deals with electrical switching investigations, thermal and structural studies on Al15Te85-xSix glasses (2 ≤ x ≤ 12). These glasses have been found to exhibit two crystallization reactions (Tc1 and Tc2) for compositions with x < 8 and a single stage crystallization is seen for compositions above x = 8. Also, a trough is seen in the composition dependence of non-reversing enthalpy (ΔHNR), based on which it is proposed that there is a thermally reversing window in Al15Te85-xSix glasses in the composition range 4 ≤ x ≤ 8. Further, Al15Te85-xSix glasses are found to exhibit a threshold type electrical switching at ON state currents less than 2 mA. The start and the end of the thermally reversing window seen in the thermal studies are exemplified by a kink and saturation in the composition dependence of switching voltages respectively. 27Al Solid State NMR measurements reveal that in Al15Te85-xSix glasses, Al atoms reside in 4-fold as well as 6-fold coordinated environments. Unlike in Al-As-Te glasses, there is no correlation seen between the composition dependence of the fraction of 4-fold and 6-fold coordinated aluminum atoms and the switching behavior of Al-Te-Si samples. Chapter 6 provides a comparison of the properties of the three glassy systems studied (As-Te-Si, Ge-Te-Si and Al-Te-Si), made to identify the system better suited for phase change memory applications. It is found that the Ge-Te-Si glassy system has better electrical/thermal properties for phase change memory applications. The seventh chapter describes easily reversible SET-RESET processes in Ge15Te83Si2 glass which is a promising candidate for phase change memory applications. This sample exhibits memory switching at a comparatively low threshold electric field (Eth) of 7.3 kV/cm. The SET and RESET processes have been achieved with 1 mA triangular current pulse for the SET process and 1 mA rectangle pulse (of 10 msec width) for RESET operation respectively. Further, a self-resetting effect is seen in this material upon excitation with a saw-tooth/square pulse. About 6.5x104 SET-RESET cycles have been achieved without any damage to the device. In chapter 8, results of in-situ Raman scattering studies on the structural changes occurring during the SET and RESET processes in Ge15Te83Si2 sample, are presented. It is found that the degree of disorder in the glass is reduced from OFF to SET state. The local structure of the sample under RESET condition is similar to that in the OFF state. The Raman results are found to be consistent with the switching results which indicate that the Ge15Te83Si2 glass can be SET and RESET easily. Further, Electron Microscopic studies on switched samples indicate the formation of nanometer sized particles of cSiTe2. A summary of the results obtained and the scope for future work are included in the chapter 9 of the thesis.

Page generated in 0.0785 seconds