• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Regulation of Glutamine Synthetase in the Diazotroph Rhodospirillum rubrum

Jonsson, Anders January 2007 (has links)
The bacterial cell needs ammonia for synthesis of glutamine from glutamate. Only one enzyme is able to catalyze this reaction, namely glutamine synthetase (GS). GS can be regulated both transcriptionally and post-translationally and it is present in all kingdoms of life. Our study has been focused on the post-translational regulation of GS in the diazotrophic bacterium Rhodospirillum rubrum. A number of proteins are involved in the covalent regulation of GS, among them are the regulatory PII proteins that depending on growth conditions also like GS are covalently modified. We have purified all proteins involved in GS regulation and developed several in vitro assays with the aim of understanding GS regulation in R. rubrum. Studies on the influence of the small metabolite effectors α-ketoglutarate and glutamine are also included together with the effect of divalent cations. In both R. rubrum and Escherichia coli, one of the enzymes participating in GS regulation is the bifunctional enzyme GlnE. GlnE is responsible for both the attachment and the removal of AMP groups from GS, which basically leads to a more inactive or active enzyme respectively. Apart from examining the above functions of GlnE, we have also found a novel third activity of R. rubrum GlnE, an antioxidant function, which is located in the C-terminal domain. We have examined this novel activity of GlnE in great detail, including site specific mutagenesis. We also generated and analyzed ΔglnE mutants in R. rubrum and the results from these studies show that suppressor mutations can occur within glnA, the gene encoding GS. We assume that the function of these suppressor mutations is to lower the specific activity of GS, which otherwise might be too high in a ΔglnE mutant since they lack the ability to adenylylate GS. In other words, it seems that ΔglnE mutants can not be generated without producing suppressor mutations.

Page generated in 0.0162 seconds