• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Global Linear Optimization Framework for Adaptive Filtering and Image Registration

Johansson, Gustaf January 2015 (has links)
Digital medical atlases can contain anatomical information which is valuable for medical doctors in diagnosing and treating illnesses. The increased availability of such atlases has created an interest for computer algorithms which are capable of integrating such atlas information into patient specific dataprocessing. The field of medical image registration aim at calculating how to match one medical image to another. Here the atlas information could give important hints of which kinds of motion are plausible in different locations of the anatomy. Being able to incorporate such atlas specific information could potentially improve the matching of images and plausibility of image registration - ultimately providing a more correct information on which to base health care diagnosis and treatment decisions. In this licentiate thesis a generic signal processing framework is derived : Global Linear Optimization (GLO). The power of the GLO framework is first demonstrated quantitatively in a very high performing image denoiser. Important proofs of concepts are then made deriving and implementing three important capabilities regarding adaptive filtering of vector fields in medica limage registration: Global regularization with local anisotropic certainty metric. Allowing sliding motion along organ and tissue boundaries. Enforcing an incompressible motion in specific areas or volumes. In the three publications included in this thesis, the GLO framework is shown to be able to incorporate one each of these capabilities. In the third and final paper a demonstration is made how to integrate more and more of the capabilities above into the same GLO to perform adaptive processing on relevant clinical data. It is shown how each added capability improves the result of the image registration. In the end of the thesis there is a discussion which highlights the advantage of the contributions made as compared to previous methods in the scientific literature. / Dynamic Context Atlases for Image Denoising and Patient Safety

Page generated in 0.0904 seconds