• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 30
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 44
  • 13
  • 11
  • 8
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Phospholipids of the glomerular basement membrane

Fung, Kevin Kai-Sang. January 1971 (has links)
No description available.
12

Ultrastructural immunoperoxidase study of experimental and human glomerulonephritis

Rantala, Immo. January 1983 (has links)
Thesis (doctoral)--University of Jyväskylä, 1983. / At head of title: The Department of Clinical Sciences, University of Tampere, the Department of Cell Biology, University of Jyväskylä. Includes bibliographical references.
13

Ultrastructural immunoperoxidase study of experimental and human glomerulonephritis

Rantala, Immo. January 1983 (has links)
Thesis (doctoral)--University of Jyväskylä, 1983. / At head of title: The Department of Clinical Sciences, University of Tampere, the Department of Cell Biology, University of Jyväskylä. Includes bibliographical references.
14

Glomerular basement membrane antigens and Goodpasture's syndrome

Wieslander, Jörgen. January 1983 (has links)
Thesis (doctoral)--Lund, 1983.
15

Development of a mathematical model of mechanical stress in the glomerulus to inform glomerulus-on-a-chip design

January 2021 (has links)
archives@tulane.edu / 1 / Owen Richfield
16

Phospholipids of the glomerular basement membrane

Fung, Kevin Kai-Sang. January 1971 (has links)
No description available.
17

Glycoproteins of the glomerular basement membrane

Lehotay, Denis C. January 1969 (has links)
No description available.
18

The pathogenesis of IgA nephropathy: the roleof IgA molecule and the nature of IgA receptors

Leung, Chi-kam, Joseph., 梁志錦. January 2003 (has links)
published_or_final_version / abstract / toc / Medicine / Doctoral / Doctor of Philosophy
19

Role of VEGF and VEGF Receptors in the Glomerulus

Sison, Karen Tanya 17 January 2012 (has links)
VEGF is a potent angiogenic and endothelial cell growth factor that is key for the development of the glomerulus, the main filtration unit of the kidney. It is continued to be expressed in the mature glomerulus, with podocytes being the major site of production. VEGF binds to two receptors, VEGFR-1 and VEGFR-2, which are expressed by the adjacent endothelial cells (ECs). VEGFR-2 is the primary mediator of VEGF signaling while VEGFR-1is thought to function as a ‘decoy’ receptor, sequestering VEGF away from VEGFR-2. Gene targeting studies in mice show that VEGF loss from the podocyte results in profound defects of the ECs, consistent with a paracrine signaling loop. However, the identification of VEGF receptors on podocytes in vitro suggests an additional autocrine signaling pathway for VEGF may exist. To further study the role of VEGF in the glomerulus and to address whether a VEGF autocrine loop is functional in vivo, we generated a transgenic mouse model with inducible VEGF upregulation in the podocyte and genetically deleted VEGFR-2 and VEGFR-1 from the podocyte using the Cre-loxP system. Increased VEGF production from the podocyte leads to increased glomerular permeability and ultrastructural changes in the glomerular filtration barrier depending on the time and length of induction. Podocyte-selective deletion of VEGFR-2 did not cause glomerular disease. In contrast, VEGFR-1 loss from the podocyte led to proteinuria and glomerular defects at 6 weeks of age with extensive podocyte foot process effacement. In keeping with the model that VEGFR-1 functions as a VEGF trap, similarities were observed between the glomerular lesions of VEGFR-1 mutant mice and transgenic mice that overexpress VEGF within podocytes. Strikingly, in vitro studies also revealed an increase in podocyte cell adhesion to sVEGFR-1, suggesting additional roles for sVEGFR-1. Together, these data suggest that a tight regulation of VEGF must be maintained in the adult glomerulus. Furthermore, these findings provide the first genetic evidence that VEGF autocrine signaling loop through VEGFR-2 is dispensable in normal glomeruli. In addition, podocytes express sVEGFR-1 and is required in podocytes in vivo to maintain glomerular integrity by regulating VEGF availability and podocyte cell adhesive properties.
20

Role of VEGF and VEGF Receptors in the Glomerulus

Sison, Karen Tanya 17 January 2012 (has links)
VEGF is a potent angiogenic and endothelial cell growth factor that is key for the development of the glomerulus, the main filtration unit of the kidney. It is continued to be expressed in the mature glomerulus, with podocytes being the major site of production. VEGF binds to two receptors, VEGFR-1 and VEGFR-2, which are expressed by the adjacent endothelial cells (ECs). VEGFR-2 is the primary mediator of VEGF signaling while VEGFR-1is thought to function as a ‘decoy’ receptor, sequestering VEGF away from VEGFR-2. Gene targeting studies in mice show that VEGF loss from the podocyte results in profound defects of the ECs, consistent with a paracrine signaling loop. However, the identification of VEGF receptors on podocytes in vitro suggests an additional autocrine signaling pathway for VEGF may exist. To further study the role of VEGF in the glomerulus and to address whether a VEGF autocrine loop is functional in vivo, we generated a transgenic mouse model with inducible VEGF upregulation in the podocyte and genetically deleted VEGFR-2 and VEGFR-1 from the podocyte using the Cre-loxP system. Increased VEGF production from the podocyte leads to increased glomerular permeability and ultrastructural changes in the glomerular filtration barrier depending on the time and length of induction. Podocyte-selective deletion of VEGFR-2 did not cause glomerular disease. In contrast, VEGFR-1 loss from the podocyte led to proteinuria and glomerular defects at 6 weeks of age with extensive podocyte foot process effacement. In keeping with the model that VEGFR-1 functions as a VEGF trap, similarities were observed between the glomerular lesions of VEGFR-1 mutant mice and transgenic mice that overexpress VEGF within podocytes. Strikingly, in vitro studies also revealed an increase in podocyte cell adhesion to sVEGFR-1, suggesting additional roles for sVEGFR-1. Together, these data suggest that a tight regulation of VEGF must be maintained in the adult glomerulus. Furthermore, these findings provide the first genetic evidence that VEGF autocrine signaling loop through VEGFR-2 is dispensable in normal glomeruli. In addition, podocytes express sVEGFR-1 and is required in podocytes in vivo to maintain glomerular integrity by regulating VEGF availability and podocyte cell adhesive properties.

Page generated in 0.061 seconds