• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 13
  • 8
  • 7
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 107
  • 107
  • 13
  • 13
  • 13
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Exploring the Suitability of a Specifici Glucocorticoid Receptor Antagonist as a Tool in the Study of the Regulation of Rat Lung Alveolarization by Glucocorticoids

Lopez, Ana Sofia 10 January 2011 (has links)
Background: Intracellular glucocorticoid receptors (GRs) mediate the regulation of lung development, including alveolarization, by glucocorticoids (GCs). One potential approach to determining the role of GC-GR signalling in alveolar formation would be by pharmacologic blockade. Hypothesis: CP472555, a novel GR antagonist with negligible anti-PR activity, is a suitable tool for the study of GC-GR regulation of rat alveolarization. Design/Methods: CP472555 doses needed to block GR were estimated in vitro in fetal rat lung primary cultures. Postnatally, a variety of doses were administered intraperitoneally over a range of days. Results: During postnatal days (PN)0-PN10, when GC levels are low, CP472555 induced changes consistent with GR agonist activity. While GC levels increase after PN11, animals exposed to CP472555 from PN11-PN21 exhibit changes consistent with anti-GR antagonist activity. Conclusion: CP472555 causes a degree of GR blockade sufficient to permit further pharmacological investigation of the role of endogenous GC-GR signalling at the end of alveolarization.
22

Exploring the Suitability of a Specifici Glucocorticoid Receptor Antagonist as a Tool in the Study of the Regulation of Rat Lung Alveolarization by Glucocorticoids

Lopez, Ana Sofia 10 January 2011 (has links)
Background: Intracellular glucocorticoid receptors (GRs) mediate the regulation of lung development, including alveolarization, by glucocorticoids (GCs). One potential approach to determining the role of GC-GR signalling in alveolar formation would be by pharmacologic blockade. Hypothesis: CP472555, a novel GR antagonist with negligible anti-PR activity, is a suitable tool for the study of GC-GR regulation of rat alveolarization. Design/Methods: CP472555 doses needed to block GR were estimated in vitro in fetal rat lung primary cultures. Postnatally, a variety of doses were administered intraperitoneally over a range of days. Results: During postnatal days (PN)0-PN10, when GC levels are low, CP472555 induced changes consistent with GR agonist activity. While GC levels increase after PN11, animals exposed to CP472555 from PN11-PN21 exhibit changes consistent with anti-GR antagonist activity. Conclusion: CP472555 causes a degree of GR blockade sufficient to permit further pharmacological investigation of the role of endogenous GC-GR signalling at the end of alveolarization.
23

Sequence and Effects of Glucocorticoid Receptor Nuclear Retention: An Aid to Understanding Nuclear Retention in Other Proteins?

Carrigan, Amanda 27 January 2011 (has links)
Corticosteroid ligands activate the glucocorticoid receptor (GR). GR plays a role in glucose homeostasis, adipogenesis, inflammation, and mood and cognitive functions. Understanding the interplay of diverse forms of receptor regulation (including post-translational modification, cofactor interactions, ligand binding, and receptor localization) and their effects is important for understanding and developing more effective treatment for a variety of conditions. Prior to ligand binding, the naïve GR is primarily cytoplasmic, residing in a chaperone complex containing heat-shock proteins and immunophilins. Upon ligand-binding, alterations to the complex allow the receptor to dimerize and import into the nucleus. Nuclear GR interacts with transcriptional regulatory sequences and recruits cofactors to regulate specific gene expression. Upon hormone withdrawal, the original chaperone complex is reassembled and the receptor is exported to the cytoplasm. Interestingly, while the import of GR into the nucleus occurs very rapidly (t ½ = 5 min), the re-export is significantly slower (t ½ = 12-24h). Previous work by our lab and others has indicated the existence of a nuclear retention signal (NRS) within the GR. The NRS sequence of the GR, its interaction partners, and the role it might play in the activity of the receptor have not yet been fully defined. Work in the Hache lab indicates that mutation of the GR nuclear localization signal 1 (NL1) increases the export rate of nuclear GR to the cytoplasm, as well as compromising receptor import, suggesting that the NL1 overlapped an NRS sequence. In this work, I made a series of GR mutants, based on sequence from the SV40 large T antigen NLS, which lacks nuclear retention activity. Using these mutants, I found that GR nuclear retention is influenced by both specific residues within the hinge region and the location of the sequence within the receptor, as reintroduction of the NLS sequence at the N-terminus of the receptor retention mutant failed to reconstitute the retention activity. Agonist liganded and hormone-withdrawn receptor mutants showed a similar decrease in retention. By contrast, antagonist-withdrawn GR mutants were retained in the nucleus, possibly due to altered receptor configuration and interactions. Assays of GR-responsive promoter activation by receptor retention mutants showed that while no difference in the ability of retention mutants to activate transcription was seen at a simple promoter, activation of a complex promoter was compromised. This impaired transactivation for the SV506-523 mutant correlated with decreased histone H4 acetylation and PolII recruitment, while GR DNA-binding at the target promoter appeared to be unaffected. These results suggested that promoter-specific cofactor interactions might be implicated in GR nuclear retention. Loss of GR hinge interaction with Oct cofactors produced an incomplete loss of retention, suggesting overlapping signals, but not supporting Oct as a primary factor in GR retention. The overlap between important residues in GR nuclear retention and localization signals and the lack of retention shown by the SV40 NLS suggested that retention might be intrinsic to the sequence of particular NLS. Preliminary results suggest that the KT511-512 residues of GR may be of general importance in protein nuclear retention, while the role of proline is likely more variable. My research has focused on increasing our understanding of glucocorticoid receptor nuclear retention and its possible implications. I have determined that the KT511-512 residues of GR play an important role in its retention, and possibly also figure in nuclear retention of other proteins. These residues are involved in interactions which affect promoter-specific histone acetylation and transcriptional activation in GR, suggesting a reason for the existence of nuclear retention.
24

The Effects Of Early Corticosterone Treatment On The Development Of The Avian Song Control System

Shahbazi, Mahin 07 August 2012 (has links)
Stress has long lasting effects on physiology, development, behavior, reproductive success and survival. These effects are mediated by glucocorticoids, such as corticosterone (Cort), via glucocorticoid receptors (GR), though the exact mechanisms underlying these effects are unknown. Early developmental stress affects the size of the avian song control nuclei (particularly HVC; proper name) and song quality in many songbirds, suggesting a direct link between brain and behavior. HVC is required for song learning and production. The complexity of the male zebra finch (Taeniopygia guttata) courtship song is important in female mate choice. Although the mechanisms behind the effects of developmental stress on song nuclei size and song quality are unknown, it is likely that elevated levels of Cort via GR within brain song nuclei play a significant role. We investigated the distribution, quantity, and subcellular-localization of GR- immunoreactive (GR-ir) neurons in the brains of male zebra finches 10 days post-hatch and in adulthood using immunohistochemistry. There was wide distribution of GR-ir neurons including two song nuclei HVC and robust nucleus of the arcopallium (RA). Distribution did not vary between the two ages but there were significant differences in the overall number of GR-ir neurons and their subcellular localization. We hypothesized that early Cort treatment would reduce song quality and HVC size in adult males. We inserted Cort implants in males at four days post-hatch and quantified the effects of early Cort treatment on adult song quality. Early Cort treatment decreased song similarity between the tutor and tutee’s songs and resulted in poorer copies of tutor song, but did not alter mean amplitude or song duration. Early Cort treatment reduced the HVC size in both juvenile and adult birds. This result suggests that the effect of developmental stress on the HVC size may be mediated through Cort via activation of GR within HVC as a mechanism by which HVC size and song quality are altered in developmentally stressed birds. These results suggest a potential role for Cort in mediating adverse effects of developmental stress in adult male zebra finches and highlight the developmental plasticity of the zebra finch brain.
25

The Role of Molecular Chaperones in the Etiology and Treatment of Psychiatric Diseases in the Elderly

O'leary, John Clarence 01 January 2013 (has links)
The elderly are at increased risk for developing psychiatric diseases, which include Alzheimer's disease, depression, anxiety and suicide. The probability of multiple disease comorbidity is also increased in the elderly. At the cellular level, the loss of protein homeostasis is often at the root of disease emergence, and thus the scientific community is searching for ways to help maintain this balance. A vast group of proteins that are paramount to balancing and counterbalancing protein levels is the molecular chaperone protein group, which has evolved a tremendous variety of functions in the cell. They aid in protein trafficking, folding, receptor signaling, neurotransmission, vesicle forming and fusion, protein degradation, and apoptosis, among other activities. Despite their best efforts, disease still ensues, but because of their vast number and multiple abilities, it may be possible to modulate these proteins as a way to treat and prevent disease. Chaperones are of particular interest in diseases of aging, because chaperone induction and effectiveness is reduced with age. In addition, many diseases of the elderly are brought on by aberrant protein accumulation, like Alzheimer's disease. As a result, the hypothesis of this dissertation is whether the modulation of molecular chaperones changes disease pathology. A molecular chaperone family that is important to protein degradation is the Hsp70 chaperone complex. Hsp70 proteins have specialized function depending on cell type and cellular compartment, but Hsp70 proteins are very important for protein synthesis and degradation. As a result, they are in a position to contribute to the regulation of proteins that become aberrant. In recent years scientific literature has indicated that compounds that inhibit the enzymatic ATP hydrolysis of these proteins promote tau degradation, which accumulates in Alzheimer's disease. Alzheimer's disease is the sixth leading cause of death in the U.S., it is a progressive neurodegenerative disease, and is caused by the aberrant accumulation of the amyloid beta and tau proteins. Here, we show that treatment with the Hsp70 inhibitor methylene blue, reduces tau, saves neurons, and restores cognition, in a mouse model of tau accumulation (rTg4510). Cognitive rescue occurred despite a severe tangle load, equal to control treated tau transgenic mice. This study shows that reducing soluble tau can restore cognition, reducing tangles is not necessarily to ameliorate cognition, and saving neurons is not sufficient to increase cognition if they are burdened with soluble tau. This work shows that methylene blue does not affect the the number of tau tangles in this model, as suggested by in vitro data. It also suggests that further work into the development of Hsp70 ATPase inhibitors may find success in alleviating the soluble tau burden found in Alzheimer's disease. The co-chaperone FKBP5 is also of extreme importance, not because it is essential, but because research has implicated this protein with a host of psychiatric diseases. Single nucleotide polymorphisms in this gene, which increase the levels of FKBP5, interact with averse traumatic events to enhance the likelihood of developing mood and anxiety disorders, including major depressive disorder, post-traumatic stress disorder, bipolar disorder, and suicide. Moreover, we have found that FKBP5 protein levels increase with age in the human brain, increasing the risk for the elderly of developing disease if exposed to traumatic stress. Here, we tested the hypothesis that FKBP5 negatively regulates resilient behavior. We found that FKBP5 levels increase with age in the wild type mouse brain, and that wild type mice display reduced resiliency with age. FKBP5-/- mice, on the other hand, show enhanced resiliency to stress at all ages tested, and are protected from aging-induced despair. At the molecular level, FKBP5 is a robust inhibitor of the glucocorticoid receptor, which is responsible for the shut-off of the hypothalamic-pituitary-adrenal axis. In addition, excess glucocorticoid levels in the blood is a robust marker of psychiatric disease. Consequently, FKBP5 may be causing disease through enhanced levels of glucocorticoids. FKBP5-/- mice display reduced corticosterone after stress. Moreover, corticosterone production increases with age, and FKBP5-/- mice are protected from this increase. These studies are the first to show that reducing the levels of FKBP5 is a promising therapeutic option for the treatment of mood disorders in the elderly, resiliency naturally declines with age due to FKBP5, corticosterone levels after stress rise due to FKBP5, and that the ablation of this gene increases resiliency and prevents aging- induced despair. As a whole, these data show that the modulation of chaperone proteins has the potential for developing new therapies for the treatment of psychiatric diseases of the elderly.
26

Sequence and Effects of Glucocorticoid Receptor Nuclear Retention: An Aid to Understanding Nuclear Retention in Other Proteins?

Carrigan, Amanda 27 January 2011 (has links)
Corticosteroid ligands activate the glucocorticoid receptor (GR). GR plays a role in glucose homeostasis, adipogenesis, inflammation, and mood and cognitive functions. Understanding the interplay of diverse forms of receptor regulation (including post-translational modification, cofactor interactions, ligand binding, and receptor localization) and their effects is important for understanding and developing more effective treatment for a variety of conditions. Prior to ligand binding, the naïve GR is primarily cytoplasmic, residing in a chaperone complex containing heat-shock proteins and immunophilins. Upon ligand-binding, alterations to the complex allow the receptor to dimerize and import into the nucleus. Nuclear GR interacts with transcriptional regulatory sequences and recruits cofactors to regulate specific gene expression. Upon hormone withdrawal, the original chaperone complex is reassembled and the receptor is exported to the cytoplasm. Interestingly, while the import of GR into the nucleus occurs very rapidly (t ½ = 5 min), the re-export is significantly slower (t ½ = 12-24h). Previous work by our lab and others has indicated the existence of a nuclear retention signal (NRS) within the GR. The NRS sequence of the GR, its interaction partners, and the role it might play in the activity of the receptor have not yet been fully defined. Work in the Hache lab indicates that mutation of the GR nuclear localization signal 1 (NL1) increases the export rate of nuclear GR to the cytoplasm, as well as compromising receptor import, suggesting that the NL1 overlapped an NRS sequence. In this work, I made a series of GR mutants, based on sequence from the SV40 large T antigen NLS, which lacks nuclear retention activity. Using these mutants, I found that GR nuclear retention is influenced by both specific residues within the hinge region and the location of the sequence within the receptor, as reintroduction of the NLS sequence at the N-terminus of the receptor retention mutant failed to reconstitute the retention activity. Agonist liganded and hormone-withdrawn receptor mutants showed a similar decrease in retention. By contrast, antagonist-withdrawn GR mutants were retained in the nucleus, possibly due to altered receptor configuration and interactions. Assays of GR-responsive promoter activation by receptor retention mutants showed that while no difference in the ability of retention mutants to activate transcription was seen at a simple promoter, activation of a complex promoter was compromised. This impaired transactivation for the SV506-523 mutant correlated with decreased histone H4 acetylation and PolII recruitment, while GR DNA-binding at the target promoter appeared to be unaffected. These results suggested that promoter-specific cofactor interactions might be implicated in GR nuclear retention. Loss of GR hinge interaction with Oct cofactors produced an incomplete loss of retention, suggesting overlapping signals, but not supporting Oct as a primary factor in GR retention. The overlap between important residues in GR nuclear retention and localization signals and the lack of retention shown by the SV40 NLS suggested that retention might be intrinsic to the sequence of particular NLS. Preliminary results suggest that the KT511-512 residues of GR may be of general importance in protein nuclear retention, while the role of proline is likely more variable. My research has focused on increasing our understanding of glucocorticoid receptor nuclear retention and its possible implications. I have determined that the KT511-512 residues of GR play an important role in its retention, and possibly also figure in nuclear retention of other proteins. These residues are involved in interactions which affect promoter-specific histone acetylation and transcriptional activation in GR, suggesting a reason for the existence of nuclear retention.
27

Sequence and Effects of Glucocorticoid Receptor Nuclear Retention: An Aid to Understanding Nuclear Retention in Other Proteins?

Carrigan, Amanda January 2011 (has links)
Corticosteroid ligands activate the glucocorticoid receptor (GR). GR plays a role in glucose homeostasis, adipogenesis, inflammation, and mood and cognitive functions. Understanding the interplay of diverse forms of receptor regulation (including post-translational modification, cofactor interactions, ligand binding, and receptor localization) and their effects is important for understanding and developing more effective treatment for a variety of conditions. Prior to ligand binding, the naïve GR is primarily cytoplasmic, residing in a chaperone complex containing heat-shock proteins and immunophilins. Upon ligand-binding, alterations to the complex allow the receptor to dimerize and import into the nucleus. Nuclear GR interacts with transcriptional regulatory sequences and recruits cofactors to regulate specific gene expression. Upon hormone withdrawal, the original chaperone complex is reassembled and the receptor is exported to the cytoplasm. Interestingly, while the import of GR into the nucleus occurs very rapidly (t ½ = 5 min), the re-export is significantly slower (t ½ = 12-24h). Previous work by our lab and others has indicated the existence of a nuclear retention signal (NRS) within the GR. The NRS sequence of the GR, its interaction partners, and the role it might play in the activity of the receptor have not yet been fully defined. Work in the Hache lab indicates that mutation of the GR nuclear localization signal 1 (NL1) increases the export rate of nuclear GR to the cytoplasm, as well as compromising receptor import, suggesting that the NL1 overlapped an NRS sequence. In this work, I made a series of GR mutants, based on sequence from the SV40 large T antigen NLS, which lacks nuclear retention activity. Using these mutants, I found that GR nuclear retention is influenced by both specific residues within the hinge region and the location of the sequence within the receptor, as reintroduction of the NLS sequence at the N-terminus of the receptor retention mutant failed to reconstitute the retention activity. Agonist liganded and hormone-withdrawn receptor mutants showed a similar decrease in retention. By contrast, antagonist-withdrawn GR mutants were retained in the nucleus, possibly due to altered receptor configuration and interactions. Assays of GR-responsive promoter activation by receptor retention mutants showed that while no difference in the ability of retention mutants to activate transcription was seen at a simple promoter, activation of a complex promoter was compromised. This impaired transactivation for the SV506-523 mutant correlated with decreased histone H4 acetylation and PolII recruitment, while GR DNA-binding at the target promoter appeared to be unaffected. These results suggested that promoter-specific cofactor interactions might be implicated in GR nuclear retention. Loss of GR hinge interaction with Oct cofactors produced an incomplete loss of retention, suggesting overlapping signals, but not supporting Oct as a primary factor in GR retention. The overlap between important residues in GR nuclear retention and localization signals and the lack of retention shown by the SV40 NLS suggested that retention might be intrinsic to the sequence of particular NLS. Preliminary results suggest that the KT511-512 residues of GR may be of general importance in protein nuclear retention, while the role of proline is likely more variable. My research has focused on increasing our understanding of glucocorticoid receptor nuclear retention and its possible implications. I have determined that the KT511-512 residues of GR play an important role in its retention, and possibly also figure in nuclear retention of other proteins. These residues are involved in interactions which affect promoter-specific histone acetylation and transcriptional activation in GR, suggesting a reason for the existence of nuclear retention.
28

Integrative modelling of glucocorticoid induced apoptosis with a systems biology approach

Chen, Daphne Wei-chen January 2013 (has links)
Glucocorticoids (GCs) have an important role in anti-inflammation, apoptosis and immunomodulatory activity. GCs exert their effect by binding to their receptor, glucocorticoid receptor (GR), which subsequently triggers receptor dimerisation, nuclear translocation and eventually causes impact on transcriptional activity. Such regulatory mechanism is complex as it is not only controlled at the transcription level, but also at the post translational level with other contributing factors such as protein stability and cofactor recruitment. Glucocorticoids are commonly used as part of the chemotherapeutical protocols for lymphoid malignancies and have been successfully implicated in treating childhood acute lymphoblastic leukaemia (ALL). Nevertheless, resistance and side effects such as muscle atrophy and osteoporosis still occur frequently.With the advance in high-throughput technology, vast amount of data on various scales, including genomics, proteomics, and metabolomics make the molecular study of cancer more complicated. The rise of systems biology helps the scientist to address this problem with the use of computation. Although the concept and the approach may vary depending on the research fields, the ultimate goal remains the same which is to create a comprehensive understanding of biological processes and to forecast outcome.The goal of this body of work is to better understand glucocorticoid induced apoptosis in acute lymphoblastic leukaemia by adopting a systems biology approach. As the Bcl-2 family, particularly Bim is known to be a key determinant of GC-induced apoptosis, we investigated the molecular mechanism of GC induction of Bim. By adopting ordinary differential equation modelling approach, we were able to make prediction and investigate details of Bim regulation by GCs. Further to this, we carried out an integrated microarray analysis in various ALL to study GC resistance and identified crucial candidate gene c-Jun as a regulator of Bim and Erg as a determinant for GC resistance. These results allowed us to refine our models and enabled more answers to be addressed. In conclusion, our findings not only suggest potential regulatory mechanisms for determining GC sensitivity, they also aid us to find potential biomarkers for determining GC resistance. More importantly, this study represents a successful example for utilising systems biology to study the genetic complexity in cancer.
29

Glucocorticoid receptor function : new insights from genetic and chemical biology approaches

Trebble, Peter January 2013 (has links)
Glucocorticoids (Gc) are vital for development, maintenance of glucose homeostasis and the resolution of inflammation. As potent modulators of the immune response Gc are routinely prescribed in the management of a variety of inflammatory diseases including asthma and rheumatoid arthritis. However clinical use of Gc is limited by variation in patient sensitivity to Gc treatment and development of a wide range of side effects. In this thesis I present two studies that have advanced our understanding of Gc action in vivo. The first defines and characterises the cause of familial glucocorticoid resistance, and the second describes the action of two potent non-steroidal Gc in a cell line model. Familial Gc Resistance: Cases of primary generalised Gc resistance are very rare and typically present as mineralocorticoid and androgen excess leading to hypertension, hypokalemia and hirsutism. Gc resistance is attributed to loss of function mutations within the glucocorticoid receptor (GR). Here I identify a family with a novel mutation in GR exon 6 that gives rise to a very mild phenotype. Analysis of transformed patient peripheral blood lymphocytes revealed a 50% reduction in full length GR but no expression of a mutant form. As this did not rule out expression in vivo, the mutant receptor (Δ612GR) was characterised in a cell line. Investigation using reporter genes revealed that Δ612GR lacked any activity, but had dominant negative action when co expressed with full length GR. In response to Gc Δ612GR was not phosphorylated or targeted for degradation. Fluorophore tagged Δ612GR was unable to translocate to the nucleus in response to Gc, but delayed the translocation of full length GR when co-expressed. Together this indicates that Δ612GR is unable to bind ligand but has dominant negative action upon full length GR most likely due to heterodimerisation. Therefore I describe a novel GR mutation that results in Gc resistance but presents with a mild very phenotype. Novel Non-steroidal Gc: Non-steroidal Gc can be used as tools to determine how ligand structure directs GR function. Here I describe two highly potent non steroidal Gc ligands, GSK47867A and GSK47869A which alter the kinetics of receptor activity. Treatment with either ligand induces slow GR nuclear translocation, promotes GR nuclear retention and prolongs transcriptional activity following ligand withdrawal. Crystal structure analysis revealed that GSK47867A and GSK47869A specifically alter the surface charge of the GR at a site important for Hsp90 binding. GR bound to GSK47867A and GSK47869A shows prolonged activity in the presence of Hsp90 inhibitor geldanamycin. Therefore this work identifies a new chemical series that could prolong GR activity due to altered pharmacodynamics rather than altered pharmacokinetics.In summary this work uses a combination of genetic and chemical biology approaches to broaden our understanding of GR function. Characterisation of naturally occurring GR mutations gives insight into the complex function of the GR, and non-steroidal Gc act as useful tools that will aid in the design of improved therapeutics.
30

Characterization of the Glucocorticoid Receptor in a Rat Model of Low Back Pain

Ibrahim, Shaimaa 14 October 2019 (has links)
No description available.

Page generated in 0.0826 seconds