Spelling suggestions: "subject:"eletroctrophysiology"" "subject:"eletroneurophysiology""
1 |
Characterization of the glutamatergic inputs in rat substantia nigra pars reticulata neurones: a patch clamp study.January 1999 (has links)
by Cheng Wai Ming. / Thesis submitted in: October, 1998. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1999. / Includes bibliographical references (leaves 54-68 (2nd gp.)). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.iv / ABSTRACT --- p.v / ABSTRACT (Chinese) --- p.vii / Chapter CHAPTER 1 --- LITERATURE REVIEW --- p.1 / Chapter 1.1 --- Ionotropic glutamate receptors --- p.1 / Chapter 1.1.1 --- AMP A receptor --- p.3 / Chapter 1.1.1.1 --- Structure of AMP A receptor --- p.3 / Chapter 1.1.1.2 --- Electrophysiological properties of AMPA receptor --- p.4 / Chapter 1.1.1.3 --- Pharmacology of AMPA receptors --- p.6 / Chapter 1.1.1.4 --- Kinetics of AMPA receptors --- p.8 / Chapter 1.1.2 --- NMDA receptor --- p.9 / Chapter 1.1.2.1 --- Structure of NMDA receptor --- p.9 / Chapter 1.1.2.2 --- Electrophysiological properties of NMDA receptor --- p.10 / Chapter 1.1.2.3 --- Pharmacology of NMDA receptor --- p.11 / Chapter 1.1.2.4 --- Kinetics of NMDA receptor --- p.12 / Chapter 1.2. --- The basal ganglia and the SNR --- p.12 / Chapter 1.3 --- Excitatory glutamatergic inputs on SNR --- p.16 / Chapter 1.4 --- Aim of study --- p.17 / Chapter CHAPTER 2 --- Electrophysiological properties of SNR neurones --- p.18 / Chapter 2.1 --- Introduction --- p.18 / Chapter 2.2 --- Methods --- p.19 / Chapter 2.2.1 --- In vitro slice preparation and maintenance --- p.19 / Chapter 2.2.2 --- Whole-cell patch-clamp recording --- p.20 / Chapter 2.2.3 --- Solutions and drugs --- p.21 / Chapter 2.2.4 --- Histological methods --- p.21 / Chapter 2.2.5 --- Data analysis --- p.22 / Chapter 2.3 --- Results --- p.22 / Chapter 2.3.1 --- Passive membrane properties of SNR neurones --- p.22 / Chapter 2.3.2 --- Firing rate and action potential characteristics --- p.23 / Chapter 2.3.3 --- Firing patterns --- p.23 / Chapter 2.3.4 --- Weak hyperpolarization activated inward rectification --- p.24 / Chapter 2.3.5 --- Slow aflerhyperpolarization --- p.25 / Chapter 2.3.6 --- Current-frequency relationship --- p.25 / Chapter 2.3.7 --- Morphology of labelled SNR neurones --- p.25 / Chapter 2.4 --- Discussion and conclusion --- p.26 / Chapter CHAPTER 3 --- AMPA and NMDA induced membrane responses --- p.30 / Chapter 3.1 --- Introduction --- p.30 / Chapter 3.2 --- Methods --- p.31 / Chapter 3.2.1 --- In vitro slice preparation and maintenance --- p.31 / Chapter 3.2.2 --- Whole-cell patch-clamp recording --- p.31 / Chapter 3.2.3 --- Solutions and drugs --- p.31 / Chapter 3.2.4 --- Drug application --- p.32 / Chapter 3.2.5 --- Immunocytochemistry --- p.32 / Chapter 3.2.6 --- Data analysis --- p.33 / Chapter 3.3 --- Results --- p.33 / Chapter 3.3.1 --- AMPA induced responses in SNR GABA neurones --- p.33 / Chapter 3.3.1.1 --- AMPA induced membrane depolarization --- p.33 / Chapter 3.3.1.2 --- AMPA induced membrane current --- p.34 / Chapter 3.3.1.3 --- Current-voltage relationship --- p.34 / Chapter 3.3.1.4 --- Effect of NBQX --- p.35 / Chapter 3.3.1.5 --- Effects of JSTX and spermine --- p.35 / Chapter 3.3.2 --- NMDA-induced response in SNR GABA neurones --- p.36 / Chapter 3.3.2.1 --- NMDA induced membrane depolarization --- p.36 / Chapter 3.3.2.2 --- NMDA induced membrane current --- p.36 / Chapter 3.3.2.3 --- APV blocked NMDA-induced current --- p.36 / Chapter 3.3.2.4 --- Effect of glycine on NMDA induced response --- p.37 / Chapter 3.3.2.5 --- Mg2+-sensitivity --- p.37 / Chapter 3.3.2.6 --- Current-voltage relationship --- p.38 / Chapter 3.3.3 --- GluR2 subunit immunostaining --- p.38 / Chapter 3.4 --- Discussion and conclusion --- p.39 / Chapter 3.4.1 --- AMPA receptors in SNR neurones --- p.39 / Chapter 3.4.2 --- NMDA receptors in SNR neurones --- p.41 / Chapter 3.4.3 --- Functional significance --- p.41 / Chapter CHAPTER 4 --- Glutamate-mediated synaptic currents in SNR --- p.43 / Chapter 4.1 --- Introduction --- p.43 / Chapter 4.2 --- Methods --- p.44 / Chapter 4.2.1 --- In vitro slice preparation and maintenance --- p.44 / Chapter 4.2.2 --- Electrophysiological recordings --- p.44 / Chapter 4.2.3 --- Electrical stimulation --- p.45 / Chapter 4.2.4 --- Solutions and drugs --- p.45 / Chapter 4.2.5 --- Data analysis --- p.46 / Chapter 4.3 --- Results --- p.46 / Chapter 4.3.1 --- Characteristics of spontaneous EPSCs --- p.46 / Chapter 4.3.1.1 --- General characteristics --- p.46 / Chapter 4.3.1.2 --- Kinetics --- p.47 / Chapter 4.3.1.3 --- Pharmacology --- p.47 / Chapter 4.3.2 --- Characteristics of evoked EPSCs --- p.48 / Chapter 4.3.2.1 --- General characteristics --- p.48 / Chapter 4.3.2.2 --- Pharmacological characterization --- p.49 / Chapter 4.3.2.3 --- Effects of bicuculline --- p.50 / Chapter 4.4 --- Discussion and conclusion --- p.50 / Chapter 4.4.1 --- Excitatory transmission onto SNR neurones --- p.50 / Chapter 4.4.2 --- Source of excitatory drive --- p.51 / Chapter 4.4.3 --- Interaction with GABA inputs --- p.52 / Chapter 4.4.4 --- Functional significance --- p.52 / REFERENCES --- p.54
|
Page generated in 0.0787 seconds