• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identification et caracterisation des Glutaredoxines de la cyanobacterie Synechocystis

Marteyn, Benoit 16 March 2005 (has links) (PDF)
Le maintien de l'homéostasie rédox des thiols, dépendant du pouvoir réducteur du<br />NADPH, est un processus vital pour la cellule faisant intervenir deux voies supposées<br />distinctes : 1) thiorédoxine réductase/thiorédoxines et 2) glutathion<br />réductase/glutathion/glutarédoxines. En dépit de leur importance, on connaît mal la spécificité<br />des glutarédoxines et des thiorédoxines [1]. C'est particulièrement vrai chez les organismes<br />photosynthétiques, dont le métabolisme rédox, dépendant de la photosynthèse, est essentiel à<br />la biosphère (production d'oxygène, assimilation du carbone et de l'azote inorganiques<br />nécessaires à la production de biomasse pour la chaîne alimentaire). La photosynthèse,<br />comme la respiration, produit des molécules oxydantes (les espèces activées de l'oxygène) qui<br />perturbent, entre autres, l'homéostasie rédox des thiols.<br />Dans le cas des glutarédoxines, il a été montré, chez les organismes hétérotrophes, que ces<br />enzymes utilisent le pouvoir réducteur du glutathion (re-réduit par le NADPH via la<br />glutathion réductase) pour contrôler l'état rédox des thiols des résidus cystéines (Cys) des<br />protéines (réduire les ponts disulfure inter- ou intra-moléculaires). Les glutarédoxines se<br />répartissent en deux grandes familles, selon la composition de leur centre rédox actif : les<br />glutarédoxines à dithiol (possédant un site actif de type CysXXCys) et les glutarédoxines à<br />monothiol (avec un site actif de type CysXXSer).<br />Au cours de ma thèse, j'ai analysé, in vitro et in vivo, les glutarédoxines avec un organisme<br />photosynthétique modèle: la cyanobactérie unicellulaire Synechocystis PCC6803<br />(Synechocystis), qui possède un petit génome (3,57 Mb) entièrement séquencé et<br />génétiquement manipulable avec les vecteurs plasmidiques développés au laboratoire.<br />Synechocystis possède 3 glutarédoxines (Grx): deux à dithiol (Grx1 et Grx2) et une à<br />monothiol (Grx3). Dans un premier temps, j'ai inactivé les 3 gènes correspondants,<br />indépendamment ou non. Tous les mutants correspondants (simples, doubles et triple) sont<br />parfaitement viables, dans les conditions standard de croissance. Par contre, leur tolérance aux<br />stress diffère de celle de la souche sauvage. Le mutant Dgrx1 est sensible au mercure (HgCl2)<br />et à l'uranium ((CH3COO)2UO2). Le mutant Dgrx2 est sensible au peroxyde d'hydrogène<br />(H2O2), au cadmium (CdSO4) et au sélénate (NaSeO4). Le mutant Dgrx3 est sensible au bleu<br />de méthylène. Le triple mutant Dgrx1Dgrx2Dgrx3 est sensible à chacun des toxiques<br />précédemment cités, et aussi, de façon spécifique par rapport aux autres mutants, à un excès<br />(x25) de zinc (ZnCl2). Ces résultats indiquent que les Grx possèdent une certaine sélectivité,<br />qui s'exerce vraisemblablement au travers d'interactions spécifiques.<br />11<br />Pour rechercher des partenaires protéiques des Grx, j'ai utilisé un système bactérien de<br />"double hybride", basé sur 2 plasmides dans lesquels on peut cloner, indépendamment, les<br />gènes codant pour les protéines "appâts" (chacun des trois gènes grx) et les protéines "proies"<br />(les partenaires possibles des Grxs). Pour identifier ces dernières, nous avons cloné,<br />indépendamment, une cinquantaine des gènes impliqués dans métabolisme rédox, sans se<br />limiter au contrôle de l'homéostasie rédox des thiols. Les 1000 tests d'interaction réalisés<br />nous ont permis d'identifier 10 interactions totalement nouvelles impliquant des Grx. Ensuite,<br />j'ai analysé les interactions (1) Grx1-MerA (MerA est la réductase du mercure) et (2)<br />thiorédoxine réductase-Grx1-Grx2, par une approche multidisciplinaire: (i) mutagenèses<br />dirigées, tests double hybride et études in vivo; (ii) approche biochimique (GST Pulldown); et<br />(iii) tests d'activité in vitro.<br />J'ai montré que l'activité de réduction du mercure de MerA est inhibée, de façon réversible,<br />par la glutathionylation (fixation d'une molécule de glutathion) d'une cystéine (Cys78) de son<br />site actif. Grx1 réactive MerA en catalysant la réaction de déglutathionylation du site actif de<br />MerA. Outre la tolérance de Synechocystis au mercure (HgCl2), j'ai montré que Grx1 et MerA<br />interviennent également dans la résistance à l'uranium (CH3COO)2UO2.<br />Parallèlement, j'ai analysé les interactions thiorédoxine réductase-Grx1-Grx2. J'ai montré que<br />la thiorédoxine réductase est capable de réduire Grx1, qui peut à son tour réduire Grx2. Cette<br />voie rédox originale compense l'absence de glutathion réductase chez Synechocystis. J'ai<br />également montré que cette "nouvelle" voie rédox est capable de réduire le sélénate. Ces<br />résultats in vitro sont confortés par certains de mes résultats qui suggèrent que Synechocystis<br />répond au sélénate par la formation d'un hétérodimère Grx1-Grx2.<br />Les deux "nouvelles" voies rédox caractérisées au cours de ma thèse sont particulièrement<br />intéressantes car elles permettent de relier deux processus rédox, homéostasie rédox des thiols<br />et détoxication des métaux lourds par réduction, qui n'étaient jusqu'ici pas considérés comme<br />étant étroitement imbriqués.
2

Arabidopsis thaliana class II TGA transcription factors provide a molecular link between salicylic acid and ethylene defense signalling / Arabidopsis thaliana Klasse II TGA-Transkriptionsfaktoren verbinden den Salicylsäure- mit dem Ethylen-Signalweg

Zander, Mark 27 April 2011 (has links)
No description available.

Page generated in 0.3611 seconds