• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 3
  • 1
  • Tagged with
  • 22
  • 22
  • 8
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Cardioprotection by Drug-Induced Changes in Glucose and Glycogen Metabolism

Omar, Mohamed Abdalla Unknown Date
No description available.
22

Lafora Disease: Mechanisms Involved in Pathogenesis

Garyali, Punitee January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Lafora disease is a neurodegenerative disorder caused by mutations in either the EPM2A or the EPM2B gene that encode a glycogen phosphatase, laforin and an E3 ubiquitin ligase, malin, respectively. A hallmark of the disease is accumulation of insoluble, poorly branched, hyperphosphorylated glycogen in brain, muscle and heart. The laforin-malin complex has been proposed to play a role in the regulation of glycogen metabolism and protein degradation/quality control. We evaluated three arms of protein quality control (the autophagolysosomal pathway, the ubiquitin-proteasomal pathway, and ER stress response) in embryonic fibroblasts from Epm2a-/-, Epm2b-/- and Epm2a-/- Epm2b-/- mice. There was an mTOR-dependent impairment in autophagy, decreased proteasomal activity but an uncompromised ER stress response in the knockout cells. These defects may be secondary to the glycogen overaccumulation. The absence of malin, but not laforin, decreased the level of LAMP1, a marker of lysosomes, suggesting a malin function independent of laforin, possibly in lysosomal biogenesis and/or lysosomal glycogen disposal. To understand the physiological role of malin, an unbiased diGly proteomics approach was developed to search for malin substrates. Ubiquitin forms an isopeptide bond with lysine of the protein upon ubiquitination. Proteolysis by trypsin cleaves the C-terminal Arg-Gly-Gly residues in ubiquitin and yields a diGly remnant on the peptides. These diGly peptides were immunoaffinity purified using anti-diGly antibody and then analyzed by mass spectrometry. The mouse skeletal muscle ubiquitylome was studied using diGly proteomics and we identified 244 nonredundant ubiquitination sites in 142 proteins. An approach for differential dimethyl labeling of proteins with diGly immunoaffinity purification was also developed. diGly peptides from skeletal muscle of wild type and Epm2b-/- mice were immunoaffinity purified followed by differential dimethyl labeling and analyzed by mass spectrometry. About 70 proteins were identified that were present in the wild type and absent in the Epm2b-/- muscle tissue. The initial results identified 14 proteins as potential malin substrates, which would need validation in future studies.

Page generated in 0.0648 seconds