• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

MECHANISMS OF TGF BETA-INDUCED INHIBITION OF CD1D-MEDIATED ANTIGEN PRESENTATION

Ryan, Jennifer Carrie 18 November 2011 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / CD1d is a cell surface glycolipid that, like Major Histocompatibility Complex (MHC) class I and MHC class II molecules, presents antigen. However, instead of peptides, CD1d presents lipids to Natural Killer (NK) T cells, a subset of T cells that express both NK cell markers and the T cell receptor and produces both T helper (Th) 1 and Th2 cytokines. Our lab focuses on the regulation CD1d-mediated antigen presentation. TGF beta is a known regulator of the immune system, such as controlling MHC class II antigen presentation. Further, TGF beta can activate the mitogen activated protein kinase (MAPK) p38, a known negative regulator of CD1d-mediated antigen presentation. Therefore, we hypothesized that TGF beta would be a negative regulator of CD1d-mediated antigen presentation, and our results showed a decrease in antigen presentation by CD1d in response to TGF beta treatment. However, this inhibition was not through p38 activation, as indicated by the absence of a rescue of CD1d-mediated antigen presentation in, TGF beta-treated, p38 dominant negative-expressing cells. Alternatively, the Smad pathway, the canonical pathway activated by TGF beta, was investigated through a lentivirus shRNA-mediated knockdown of Smad2, Smad3 and Smad4 proteins. Smad2 shRNA-expressing cells showed in an increase in CD1d-mediated antigen presentation, suggesting an inhibitory role for Smad2. In contrast, Smad3 shRNA-expressing cells did not differ from control cells. However, as in the case of Smad2, CD1d+ cells in which Smad4 was knocked down, were substantially better at CD1d-mediated antigen presentation than control cells, suggesting that it also negatively regulates antigen presentation. Overall, these studies demonstrate that the canonical TGF beta/Smad pathway regulates an important part of the host’s innate immune response, vis-à-vis CD1d-mediated antigen presentation.

Page generated in 0.0834 seconds