• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 117
  • 29
  • 28
  • 16
  • 15
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 2
  • Tagged with
  • 506
  • 171
  • 87
  • 71
  • 65
  • 62
  • 55
  • 52
  • 48
  • 43
  • 42
  • 38
  • 37
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Bacteria-agglutinating glycoproteins in human saliva : an in vitro study with special reference to Streptococcus mutans

Rundegren, Jan January 1982 (has links)
The activity and specificity of salivary glycoproteins (agglutinins) aggregating various human indigenous microorganisms were studied in vitro. The agglutinin reacting with a serotype c strain of Streptococcus mutans was isolated and chemically characterized. The results can be summarized as follows: 1. Saliva contains agglutinins against predominant oral microorganisms but also against some of the predominant intestinal bacteria. Agglutinin from one individual was active against microorganisms both from this individual and other individuals. 2. Saliva-induced agglutination of S. sanguis was inhibited by antisera to IgA, IgG, IgM, and secretory component while S. mutans agglutination was inhibited only by albumin and antisera to IgA. The differences in inhibition indicate the presence of different agglutinins for the two strains. 3. The agglutinin for an S. mutans serotype c strain was sensitive to a reduction in pH and to treatment with Concanavalin A while an S. mitior agglutinin was not. The tested S. mitior strain, however, adsorbed the S. mutans agglutinin without being agglutinated. 4. The agglutinin reacting with an S. mutans serotype c strain could be desorbed from the microorganisms in a neutral phosphate buffer. Calcium in the order of 10 million molecules per bacteria was needed to restore agglutination induced by the isolated agglutinin. 5. The agglutinin in parotid saliva responsible for aggregation of an S. mutans serotype c strain was characterized as a non-immunoglobulin glycoprotein with no blood group activity. The agglutinin was a polymer with a molecular weight exceeding 5 000 kdaltons while the monomeric agglutinin had a molecular weight of 440 kdaltons. The concentration of the agglutinin in parotid saliva was as low as 0.5 per cent of total protein but because 0.1 ug of the agglutinin caused rapid aggregation of as many as 100 million bacteria the agglutinin is considered highly active. The results indicate the presence in saliva of different agglutinins with specificity for different bacterial species. High molecular weight glycoproteins seem to play a major role in saliva-induced agglutination of microorganisms and in mechanisms related to clearance and retention of oral microorganisms. / digitalisering@umu.se
102

Expression and stability of myelin-associated elements

Päiväläinen-Jalonen, S. (Satu) 25 September 2007 (has links)
Abstract The function of the nervous system is based on the targeted transmission of electrical impulses assuring the coordinated function of tissues and organs. Myelination of the neuronal axons allows the fast saltatory conduction by producing repetitive sites where sodium channels cluster on the axolemma. In the peripheral nervous system (PNS), myelin is formed by differentiation of the Schwann cell plasma membrane. The cells form myelin by first wrapping consecutive layers of the plasma membrane around the axons and then excluding almost all of the cytoplasm from the structure, forming compacted and non-compacted membrane compartments. The myelin-associated glycoprotein (MAG) is located in all of the non-compacted regions of the PNS myelin sheath. Its two isoforms, L-MAG and S-MAG, differ only by the carboxy-terminal tails of their respective cytoplasmic domains. Both of the MAG isoforms are found in PNS myelin. They are differentially expressed during development and, until now, it has been thought that L-MAG is not present in the mature PNS myelin sheaths of murines. This study shows that both MAG isoforms can be found in different non-compacted membrane compartments in the mature PNS myelin sheaths in dorsal root ganglia (DRG)/Schwann cell cocultures. Early myelin development and myelin maturation were analyzed by means of a study of the expression of two early myelin markers, MAG and galactosyl cerebrosides (Gal-CB), believed to play roles in both myelin formation and maintenance. In order to allow the exploitation of the full potential of the DRG/Schwann cell coculture model through the use of mouse mutants, a coculture method was developed in which mouse DRGs and Schwann cells are able, for the first time, to produce significant amounts of myelin. To further explore the role of MAG in myelin maintenance and stability, the stability of purified MAG was studied through extensive degradation experiments.
103

The integrated effects of selected inducers of endoplasmic reticulum stress, the unfolded protein response and apoptosis on P-Glycoprotein mediated drug resistance in MCF-7 breast carcinoma cells

Pillay, Leeshan January 2015 (has links)
>Magister Scientiae - MSc / Purpose: One of the leading causes of death reported in women worldwide is breast cancer. Manytumours, including breast cancer, associated with poor prognosis, have received a renewed focus and increased perspective with regard to drug discovery and innovation towards developing rational combination regimens of first-line anticancer drugs with novel compounds that target diverse hallmarks of the cancer phenotype. Multidrug resistance (MDR), which has been found to significantly decrease the efficacy of anticancer drugs and causes tumor recurrence, has been a major challenge in clinical cancer treatment with chemotherapeutic drugs for decades. Several mechanisms of overcoming drug resistance have been postulated and the well known P-glycoprotein (P-gp) including other drug efflux transporters are considered to be critical in pumping anticancer drugs out of cells which in turn results in unsuccessful chemotherapy treatments. The endoplasmic reticulum (ER) is an interconnecting organelle which synthesizes proteins and its quality control processes ensures the proper protein folding, post-translational modifications and conformation of secretory and trans-membrane proteins. Previous studies demonstrated that geldanamycin (GA), a benzoquinone ansamycin antibiotic, the antibiotic, tunicamycin (TM) and the sesquiterpene lactone, thapsigargin (TG) have been found to cause ER stress and consequently, cellular arrest. GA is known to manifest anti-cancer activity through the inhibition of Hsp90-chaperone, TM interferes with N-glycosylation of newly synthesized proteins triggering the unfolded protein response, while TG inhibits intracellular Ca2+ ATPases resulting in increased cytosolic Ca2+. Cellular stress conditions, lead to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum lumen which results in a unfolded protein response (UPR) to maintain cell survival in cancer cells. ERS has been previously reported to enhance MDR1 transcriptional induction and P-gp transport function in cancer cells, however, prolonged endoplasmic reticulum stress conditions and inadequate unfolded protein response force cells undergo apoptosis. In this study, we examined the effects of GA, TG and TM alone and in combination to determine the cellular response of the MCF-7 breast carcinoma cell line with regard to proliferation and P-gp-mediated drug efflux activity and apoptosis. Methods: Analyses of MCF-7 breast carcinoma cells exposed to Endoplasmic Reticulum Stress (ERS) inducers geldanamycin, thapsigargin and tunicamycin, alone and in combination, included growth curves alone and in the presence of 24 hour IC50 inhibitory concentrations of the 3 ERS inducers alone, dose-response curves (MTT cytotoxicity assays) of the ERS alone and in combination, analysis of P-glycoprotein-mediated efflux pump activity in the presence of the ERS inducers alone and in combination (Calcein-AM efflux assays), analysis of viability, cytotoxicity and early apoptosis via caspase-3/7 expression (Triplex assay) and morphological staining of apoptotic and/or necrotic cells in the presence of IC50 inhibitory concentrations of the ERS inducers alone with Annexin V-FITC. Results: This study investigated the effects of Endoplasmic Reticulum Stress (ERS) inducers on growth and proliferation of MCF-7 breast carcinoma cells in culture. The MCF-7 cell line was exposed to different concentrations of ERS inducers alone and in combination with each other. All responses occurred in a dose- and time- dependent manner. When combined at equimolar log dose concentrations, integrated effects yielded enhanced cytotoxic properties as IC50 values were drastically decreased in combination as opposed to single ERS inducer responses. Combined effect on P-glycoprotein-mediated drug efflux activity yielded minor but insignificant decreases in efflux pump activity at different time intervals as opposed to the increase in cellular efflux in the presence of the ERS inducers alone at different time intervals. Caspase-3/7 apoptotic protein expression was increased as log doses of ERS inducers alone were increased, leading to cell necrosis at higher cytotoxic concentrations. The determined IC50 growth inhibitory concentrations after 24 hours were confirmed by the Annexin V-FITC demonstrating early apoptotic, necrotic and viable cells in the presence of the ERS inducers alone. Conclusion: This study demonstrated a significant growth inhibition of MCF-7 breast carcinoma cells upon exposure to ERS inducers alone. Results suggested that when ERS inducers are used in combination, their efficacy is enhanced as 50 percent inhibitory concentrations were considerably lower in combination as opposed to when used alone. The present study is consistent with previous studies with geldanamycin, and was the 1st to investigate the effects of geldanamycin, thapsigargin and tunicamycin in combination and with reference to P-gp efflux activity. Results suggested that in combination, efflux activity may be reduced, and efficacy may be enhanced. To enhance efficacy would be a major breakthrough in cancer drug discovery and development-targeting specific populations of cancer cells and reducing ERS-induced toxicity to normal cells and vital organs.
104

Models of Epsilon-Sarcoglycan Gene Inactivation and their Implications for the Pathology of Myoclonus Dystonia

Given, Alexis January 2013 (has links)
Myoclonus Dystonia (MD) is an autosomal dominant movement disorder characterized by bilateral myoclonic jerks paired with dystonia 1. Mutations have been mapped to the ε-sarcoglycan (SGCE) gene in about 40% of patients 2,92. The purpose of this project was to examine the properties of SGCE in the central nervous system (CNS) and use this knowledge to elucidate the pathology of MD. Although Sgce is a member of the sarcoglycan complex (SGC) in other tissues, little is known about its interactions in the CNS. The vast majority of mutations in SGCE alter the translational reading frame. Proteins arising from these rare mutations are less stable than the wild type (WT) and undergo preferential degradation via the ubiquitin proteasome system 3. As this locus is maternally imprinted, patients with MD are effectively null for sgce expression 73,91. Therefore, Sgce knock out (KO) models should approximate MD conditions both in vivo and in vitro. As there are no current treatments for MD, in sight into the pathology of the disease will aid in eventual treatments and help bring patients some relief by finally understanding their disease. Since a large percentage of MD patients are without the sgce protein, identifying what this protein’s function is and how its absence effects normal processing in the brain should help to identify the underlying cellular pathology which produces the MD phenotype. This research was performed under the hypothesis that, in neuronal cells, sgce interacts with a group of proteins that together play a role in stabilization and localization of ion channels and signaling proteins at the cell membrane. The aims were to: (1) Build a MD mouse model with either a conditional knock-out (cKO) or a conditional gene repair (cGR) mutation; (2) Use neuroblastoma cells to identify the other proteins which interact with sgce in neurons, and; (3) Determine if there is a disruption of the localization of the sgce-complex members due to the loss of sgce. Recombineering was used to complete the constructs for two transgenic mouse models: One model for the KO of exon 4 of sgce and one for the cGR in intron 1. Primary neurosphere lines from two previously generated chimeras were developed, as well as from a WT mouse. These neurosphere cell lines allowed comparisons of RT-PCR results from a heterogeneous neurological cell population to neuroblastoma cell lines. mRNA is present in neuronal cells for many of the DGC associated proteins. It was confirmed that the KD of sgce results in a reduction of nNOS protein and in increased proliferation of NIE cells. By using a nitrite/nitrate assay as well as studies with L-NAME, it was confirmed that this increased proliferation was in fact due to a lack of nNOS function. These proliferation changes did not occur in N2A cells, which do not express high levels of nNOS during proliferation, further confirming nNOS’s role in the proliferation changes. Using qRT-PCR, KD of sgce was shown to result in significant changes in the transcript levels for many DGC associated proteins. This suggests that a DGC-like complex is forming in neuronal cells. Also, as a result of difficulties with the research, it became clear that over-expression of sgce causes cell death. This observation was quantified using cell counts and TUNEL staining, both showing significant results. Additionally, several new constructs were created which will hopefully be of use for future students wanting to study sgce’s functions. New shRNA targeting sgce and sgcb have been made and both constructs result in reducing the expression of sgce. Seven different flag-tagged sgces have been created and some of these have been transferred into a tet-inducible system, which should circumvent the problem of over-expression. Finally GFP-tagged constructs for sgce and sgcb have been made and pooled clones have been developed. These tools will hopefully enable future students to continue to tease apart sgce’s function(s).
105

The application of image analysis extensions to processes of relevance to drug development

Hamrang, Zahra January 2013 (has links)
In the past forty years advancements in fluorescence-based methods including imaging (e.g. confocal and multi-photon) and quantitative spectroscopies (e.g. Fluorescence Correlation Spectroscopy) have been applied to systems ranging from solutions to in vivo models: such methods possess the ability to monitor fluorescence intensity fluctuations and offer the potential to unravel biophysical and biochemical phenomena. A major disadvantage associated with these methods is their ever-increasing cost resulting in the development of image analysis tools that offer the potential to exploit hidden information contained in confocal images.The hypothesis pertaining to this thesis is that image analysis tools developed in recent years exemplified by Raster Image Correlation Spectroscopy (RICS), Spatial Intensity Distribution Analysis (SpIDA) and Fluorescence Intensity Gaussian Mixture Model Analysis (FIGMMA) will provide a new insight into current pharmaceutical problems. The application of these methods to the quantification of protein aggregation, monomer/dimer equilibria, p-glycoprotein efflux activity and transcytosis are presented in this thesis.Protein aggregation poses a major challenge to the biotechnology industry which currently lacks analytical capabilities to profile broad particle size ranges. An in-house RICS (ManICS) software was validated against Dynamic Light Scattering and Fluorescence Correlation Spectroscopy (FCS) to determine Bovine Serum Albumin (BSA) aggregate population distributions under accelerated stability conditions. Initial stages implicated in the growth of aggregates are vital to the mechanistic assessment of protein aggregation. Hence, real-time in situ examination of monomer loss and aggregation of BSA was performed at 50 °C to enable continuous assessment with imaging and subsequent SpIDA analysis. Results obtained from this study suggested reversible fluctuation between monomers and dimers for up to four hours.To correlate membrane receptor and transporter expression with activity and enable the comparison of expression in multiple cell lines, population densities of p-glycoprotein transporters and transferrin receptors were determined using SpIDA in samples subjected to immunofluorescence labelling.The Calcein retention assay is a routine approach to determining multidrug resistance associated with p-glcoprotein efflux and the traditional plate reader approach omits microscopic aspects of p-glycoprotein Calcein-AM uptake and efflux. Confocal microscopy and data obtained from image analyses supported the subcellular and intercellular assessment of Calcein accumulation in MDR1-transfected and control cell lines as a function of time and verapamil concentration. Finally, live cell imaging of transferrin vesicular transport and Cell TraceTM Calcein red-orange AM internalisation in combination with traditional Transwell® assays were assessed to compare their transcellular transport and intracellular concentrations in multiple cell lines. Images obtained enabled visualisation of internalisation and following analysis using SpIDA, RICS and FIGMMA the number of intracellular vesicles and dynamic parameters of Cell TraceTM Calcein red-orange diffusion and intracellular concentration were determined.In conclusion, image analysis tools were applied to providing new parametric insights into a number of pharmaceutically-relevant processes and in some instances this is the first example of such studies. Despite current phenomenal advances in image acquisition capabilities, there remains a broad scope for the validation of image analysis tools and their application to a multitude of areas of interest to pharmaceutical and biomolecular research.
106

Immuunregulerende, anti-mikrobiese en anti-tumor aktiwiteit van nuwe riminofenasiene (Afrikaans)

Durandt, Chrisna 18 August 2005 (has links)
The full text of this thesis/dissertation is not available online. Please <a href="mailto:upetd@up.ac.za">contact us</a> if you need access. Read the abstract in the section 00front of this document. / Dissertation (MSc (Medical Immunology))--University of Pretoria, 2006. / Immunology / unrestricted
107

Immunomodulation by Shark Cartilage Extracts

Merly, Liza 12 July 2011 (has links)
The immune system is composed of innate and adaptive mechanisms. Innate immune responses are significantly modulated by immunomodulatory factors that act through the induction of specific patterns of cytokine production in responding cells. Human leukocytes have been shown to respond to substance(s) present in acid extracts of commercial shark cartilage (SC). Shark cartilage is a food supplement taken by consumers as a prophylaxis and for the treatment of conditions ranging from arthritis to cancer. No reliable scientific evidence in the literature supports the alleged usefulness of shark cartilage supplements, but their use remains popular. Cartilage extracts exhibit immunomodulatory properties by inducing various inflammatory, Th1-type cytokines and potent chemokines in human peripheral blood leukocytes (HPBL) in vitro. The objectives of the study were to (1) to determine the nature of the active component(s), (2) to define the scope of cellular response to SC extract, and (3) to elucidate the molecular mechanisms underlying bioactivity. Results showed that there are at least two cytokine-inducing components which are acid stable. One anionic component has been identified as a small (14-21 kDa) glycoprotein with at least 40% carbohydrate content. Shark cartilage stimulated HPBL to produce cytokines resembling an inflammatory, Th1 polarized response. Leukocyte-specific responses consist of both initial cytokine responses to SC directly (i.e., TNF-a) and secondary responses such as the IFN-γ response by lymphocytes following initial SC stimulation. Response of RAW cells, a murine macrophage cell line, indicated that TNF-α could be induced in macrophages of another mammalian species in the absence of other cell types. The results suggest that the human monocyte/macrophage is most likely to be the initial responding cell to SC stimulation. Stimulation of cells appears to engage at least one ligand-receptor interaction with TLR 4, although the role of TLR 2 cannot be ruled out. Initial activation is likely followed by the activation of the JNK and p38 MAPK signal transduction pathways resulting in activation, release, and translocation of transcription factor nuclear factor κB (Nf-kB). This dissertation research study represents the first in-depth study into characterizing the bioactive component(s) of commercial shark cartilage responsible for its immunomodulating properties and defining cellular responses at the molecular level.
108

EDEM2 stably disulfide-bonded to TXNDC11 catalyzes the first mannose trimming step in mammalian glycoprotein ERAD / 哺乳動物の構造異常糖タンパク質分解におけるマンノーストリミングの第一ステップは、TXNDC11と安定なジスルフィド結合を形成したEDEM2により触媒される

GINTO, GEORGE 25 May 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第22633号 / 理博第4622号 / 新制||理||1664(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 森 和俊, 教授 平野 丈夫, 教授 川口 真也 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
109

Functional analysis of the gene organization of the pneumoviral attachment protein G / Funktionelle Analyse der Genorganisation des pneumoviralen Attachment-Protein G

Adenugba, Akinbami Raphael January 2021 (has links) (PDF)
The putative attachment protein G of pneumonia virus of mice (PVM), a member of the Pneumoviruses, is an important virulence factor with so far ambiguous function in a virus-cell as well as in virus-host context. The sequence of the corresponding G gene is characterized by significant heterogeneity between and even within strains, affecting the gene and possibly the protein structure. This accounts in particular for the PVM strain J3666 for which two differing G gene organizations have been described: a polymorphism in nucleotide 65 of the G gene results in the presence of an upstream open reading frame (uORF) that precedes the main ORF in frame (GJ366665A) or extension of the major G ORF for 18 codons (GJ366665U). Therefore, this study was designed to analyse the impact of the sequence variations in the respective G genes of PVM strains J3666 and the reference strain 15 on protein expression, replication and virulence. First, the controversy regarding the consensus sequence of PVM J3666 was resolved. The analysis of 45 distinct cloned fragments showed that the strain separated into two distinct virus populations defined by the sequence and structure of the G gene. This division was further supported by nucleotide polymorphisms in the neighbouring M and SH genes. Sequential passage of this mixed strain in the cell line standardly used for propagation of virus stocks resulted in selection for the GJ366665A-containing population in one of two experiments pointing towards a moderate replicative advantage. The replacement of the G gene of the recombinant PVM 15 with GJ366665A or GJ366665U, respectively, using a reverse genetic approach indicated that the presence of uORF within the GJ366665A significantly reduced the expression of the main G ORF on translational level while the potential extension of the ORF in GJ366665U increased G protein expression. In comparison, the effect of the G gene-structure on virus replication was inconsistent and dependent on cell line and type. While the presence of uORF correlated with a replication advantage in the standardly used BHK-21 cells and primary murine embryonic fibroblasts, replication in the murine macrophage cell line RAW 264.7 did not. In comparison, the GJ366665U variant was not associated with any effect on replication in cultured cells at all. Nonetheless, in-vivo analysis of the recombinant viruses associated the GJ366665U gene variant, and hence an increased G expression, with higher virulence whereas the GJ366665A gene, and therefore an impaired G expression, conferred an attenuated phenotype to the virus. To extend the study to other G gene organizations, a recombinant PVM expressing a G protein without the cytoplasmic domain and for comparison a G-deletion mutant, both known to be attenuated in vivo, were studied. Not noticed before, this structure of the G gene was associated with a 75% reduction in G protein expression and a significant attenuation of replication in macrophage-like cells. This attenuation was even more prominent for the virus lacking G. Taking into consideration the higher reduction in G protein levels compared to the GJ366665A variant indicates that a threshold amount of G is required for efficient replication in these cells. In conclusion, the results gathered indicated that the expression levels of the G protein were modulated by the sequence of the 5’ untranslated region of the gene. At the same time the G protein levels modulated the virulence of PVM. / Das mutmaßliche „attachment“ Protein G des Pneumonievirus der Maus (PVM), einem Mitglied des Genus Pneumovirus, ist ein bedeutender Virulenzfaktor, mit allerdings noch nicht vollständig verstandener Funktion. Dabei zeichnet sich die Sequenz des G-Gens durch Nukleotid-Polymorphismen und damit verbundenen Variationen in der Genorganisation und möglicherweise der Proteinstruktur sowohl zwischen als auch innerhalb von PVM-Stämmen aus. Insbesondere für den PVM-Stamm J3666 wurden zwei verschiedene Organisationen des G-Gens beschrieben: ein Polymorphismus des Nukleotids 65 des G-Genes erzeugt einen neuen „upstream Open reading frame“ (uORF), der dem eigentlichen G-ORF vorausgeht (GJ366665A), oder führt zu einer Verlängerung des eigentlichen G-ORF von G um 18 Kodons (GJ366665U). Ziel dieser Studie war es deshalb, die Auswirkung dieser Sequenzvariabilitäten der für PVM J3666 beschriebenen G-Gene im Vergleich zu dem des Referenzstamms PVM 15 bezüglich Proteinexpression, der Virusreplikation und der Virulenz zu untersuchen. Als erstes wurden die beschriebenen Sequenzunterschiede bezüglich des PVM-Stamms J3666 untersucht. Die Analyse von 45 verschiedenen klonierten Fragmenten von PVM J3666 zeigte, dass es sich bei diesem Stamm eigentlich um zwei separate Viruspopulationen handelt, die sich durch die Sequenz und Struktur des G-Genes definieren lassen. Diese Unterscheidung wird durch weitere Nukleotid-Polymorphismen in den benachbarten Genen, M und SH, gestärkt. Sequenzielle Passagierung dieses gemischten Stammes in der standardmäßig zur Virusanzucht verwendeten BHK-21-Zelllinie resultierte in einem von zwei Experimenten in der Selektion der GJ366665A-Population, das ein Hinweis auf einen moderaten Replikationsvorteil darstellt. Der Austausch des G-Gens des Referenzstamms PVM 15 durch GJ366665A oder GJ366665U mithilfe der Reversen Genetik, zeigte, dass der uORF innerhalb von GJ366665A zu einer deutlich reduzierten Expression des eigentlichen G-ORF führt. Andererseits führte die potenzielle Verlängerung des ORF in GJ366665U zu einer im gleichen Maße erhöhten Expression des G-Proteins. Dagegen war der Einfluss der G-Genorganisation auf die Virusvermehrung in Zellkultur in Abhängigkeit von Zelllinie und Zelltyp inkonsistent. Während ein uORF mit einem Replikationsvorteil in BHK-21-Zellen und primären murinen embryonen Fibroblasten korrelierte, war dies in der murinen Makrophagen-Zelllinie RAW 264.7 nicht zu beobachten. Im Vergleich dazu konnte die GJ366665U-Variante nicht mit einem Einfluss auf die Virusvermehrung in Verbindung gebracht werden. Nichtsdestotrotz, konnte die GJ366665U-Variante, und damit eine erhöhte Expression von G, mit einer gesteigerten Virulenz assoziiert werden, während die GJ366665A-Variante, d. h. eine verringerte G-Expression zur Attenuierung des Virus führte. Die Untersuchungen wurden auf weitere G-Genstrukturen, d.h. ein rekombinantes PVM, rPVM-Gt, das ein N-terminal verkürztes G-Protein exprimiert, ausgeweitet. Zum Vergleich wurde eine Deletionsmutante des kompletten G-Gens, rPVM-ΔG, mit einbezogen. Von beiden Viren war bereits bekannt, dass sie in vivo attenuiert sind. Die Organisation des Gt-Gens war mit einer um 75 % verringerten Expression des entsprechenden Proteins assoziiert, was zuvor nicht beobachtet worden war. Zugleich zeigte rPVM-Gt eine deutliche Attenuierung der Replikation in RAW 264.7-Zellen und primären Mausmakrophagen, die von der G-Deletionsmutante noch übertroffen wurde. Die im Vergleich zu der GJ366665A-Variante deutlich höhere Reduktion der G-Expression dieser beiden G-Mutanten in Betracht ziehend, scheint dies darauf hinzuweisen, dass eine bestimmte Mindestexpression von G für eine effiziente Virusvermehrung in diesen Zellen benötigt wird. Zusammenfassend deuten die erhaltenen Ergebnisse darauf hin, dass die Expression des G-Proteins durch die jeweiligen 5’ nicht-translatierte Region des Gens moduliert wird, was einen neuen Mechanismus für Negativstrang-RNA-Viren darstellt. Zugleich moduliert die Expressionsrate von G die Virulenz von PVM.
110

Recognition Mechanism of Dibenzoylhydrazines by Human P-glycoprotein / ヒトP-糖タンパク質による Dibenzoylhydrazine類縁体認識機構の解明

Miyata, Kenichi 24 November 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第20065号 / 農博第2194号 / 新制||農||1045(附属図書館) / 学位論文||H28||N5021(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)准教授 赤松 美紀, 教授 植田 和光, 教授 宮川 恒 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM

Page generated in 0.0639 seconds