• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

La reactividad de la superficie de minerales : interacción con iones de relevancia ambiental

Arroyave, Manuel 09 March 2018 (has links)
La corteza terrestre puede ser imaginada como un enorme lecho reactivo que contiene miles de millones de kilómetros cuadrados de superficie de minerales. Buena parte de esta superficie está en contacto con el agua y las sustancias que están disueltas en ella, y en esa zona de contacto ocurren variados procesos físicos y químicos de relevancia ambiental. Por lo tanto, es importante estudiar cómo las interacciones en estas interfaces influyen o controlan la especiación, movilidad, transporte y distribución de sustancias de interés ambiental como los iones fosfato, el herbicida glifosato (Gli) y los ácidos húmicos (AH). Luego de una introducción general en los Capítulos 1 y 2, en el Capítulo 3 se investigó los efectos del AH en la adsorción/desorción de Gli en goetita mediante isotermas de adsorción y espectroscopía FTIR-ATR. Estos estudios revelaron que la adsorción del Gli es fuertemente disminuida por las moléculas de AH. El efecto opuesto no se observó: la adsorción de AH no se ve afectada por la presencia de Gli. La presencia de AH en la superficie reduce de forma considerable la velocidad de adsorción y desorción de Gli. En el Capítulo 4 se estudió la cinética de desorción del Gli en goetita por medio de espectroscopía FTIR-ATR usando una celda de flujo. Los resultaron mostraron que la velocidad de desorción del Gli casi no cambió ni con la concentración ni con el tipo de ligando entrante. Los resultados permitieron inferir datos importantes sobre el mecanismo de la reacción, concluyéndose que la velocidad de desorción es controlada principalmente por el rompimiento del enlace Fe-Gli, a través de un proceso de tipo disociativo o intercambio disociativo. En el Capítulo 5 se presenta un estudio por espectroscopia FTIR-ATR de la especiación de fosfato adsorbido en goetita a diferentes pH y cubrimientos superficiales. Los resultados mostraron un comportamiento diferente en dos grupos de bandas, lo cual indica que las mismas pertenecen a dos complejos superficiales distintos. Se hicieron cálculos con el modelo de complejación CD-MUSIC y los resultados que ajustaron mejor se obtuvieron asumiendo que los complejos superficiales corresponden con las especies mononuclear monodentado protonado (MMH) y mononuclear monodentado diprotonado (MMH2). En el Capítulo 6 se presentan las conclusiones finales de esta tesis doctoral. / The earth's crust can be imagined as a large reactive cap with a mineral surface of billions square kilometers. A large part of this surface is in contact with water and dissolved substances, and thus different physical-chemical processes environmentally relevant occur on it. Therefore, it is important to study how the interfacial interactions affect or control the speciation, mobility, transport and distribution of substances of environmental interest such as phosphorus, glyphosate herbicide (Gly) and humic acids (HA). After a general introduction in Chapters 1 and 2, the effects of HA on the adsorption/desorption of Gly in goethite through adsorption isotherms and ATR-FTIR spectroscopy, are investigated in Chapter 3. The studies revealed that Gly adsorption is strongly diminished by HA molecules. The opposite effect was not seen: the adsorption of HA is not affected by the presence of Gly. The presence of HA on the surface considerably reduces the adsorption and desorption rate of Gly. The desorption kinetics of Gly from goethite was studied in a flow cell using ATR-FTIR spectroscopy and the results were discussed in Chapter 4. As can be seen, Gly desorption rate can hardly be changed with either the concentration or the type of entering ligands. The results allowed to infer important data about the mechanism of the reaction, and consequently, that the desorption rate was mainly a result of the breakage of Fe-Gly bond through a dissociative process or dissociative exchange. An ATR-FTIR spectroscopy study of the speciation of phosphate adsorbed on goethite at different pH and surface coverages is presented in Chapter 5. The results showed a different behavior of two groups of bands which belong to two different surface complexes. Calculations were made with the CD-MUSIC complexation model and the best fit was obtained assuming that the surface complexes correspond to the monodentate mononuclear mononprotonated complex (MMH) and the monodentate mononuclear diprotonated complex (MMH2). The conclusions of this doctoral thesis are presented in Chapter 6.
2

Espectroscopia Raman aplicada ao estudo de pigmentos em bens culturais: I - pinturas rupestres / Raman spectroscopy applied to the study of pigments in cultural goods: I - rupestrian paintings

Lopes, Francisco Nascimento 14 March 2005 (has links)
Neste estudo amostras coletadas de pinturas rupestres foram analisadas para identificação do material utilizado; análises da sua interação e de processos eventuais de degradação, além de atribuições quanto à sua origem, foram também feitas através da espectroscopia Raman. Pigmentos encontrados em pinturas rupestres em Minas Gerais foram identificados, junto a produtos de degradação microbiológica. A partir dos resultados, foi feita uma caracterização da transformação de desidratação do pigmento amarelo de goetita (α-FeOOH) a hematita (α-Fe2O3) por espectroscopia Raman na tentativa de contextualizá-la no problema da origem da hematita encontrada nas representações. Foram identificados os pigmentos calcita (CaCO3) para o branco, carvão vegetal para o preto, goetita (α-FeOOH) para o amarelo e hematita (α-Fe2O3) para o vermelho, que constituem basicamente a paleta de cores desse período. Produtos de degradação microbiológica foram identificados por espectroscopia Raman e no infravermelho por ATR como sendo whewellita (CaC2O4.H2O) e weddelita(CaC2O4.2H2O). A transformação topotática de goetita a hematita por aquecimento foi acompanhada por espectroscopia Raman in situ e ex-situ e infravermelho, na tentativa de caracterizar o processo quanto às fases formadas, possíveis marcadores, de maneira a complementar resultados da literatura que utilizaram outras técnicas, como difração de raio-X (XRD) e microscopia eletrônica de transmissão (TEM). Esse estudo foi realizado na tentativa de determinar a existência de possível manipulação térmica desses materiais como sugerido em trabalhos anteriores. Em particular, nos espectros Raman, o comportamento diferenciado da banda em torno de 660 cm-1 e a maior largura das bandas de uma maneira geral, presentes na chamada hematita desordenada, perfil que as amostras naturais coletadas apresentam, são marcadores do efeito de temperatura, uma vez que parecem estar ligados mais estreitamente ao deslocamento catiônico dos íons Fe do que ao rearranjo da gaiola octaédrica de oxigênios ao redor destes, durante a transição a partir de goetita. Esse comportamento dos espectros Raman é confirmado pelos padrões dos difratogramas de raio-X. Concluiu-se que esse desordenamento, entretanto, não é causado somente pela temperatura e, dessa forma, não pode ser usado para atestar inequivocamente como sendo resultado de processamento dos materiais (goetita). / This dissertation reports the investigation carried out on samples collected from rupestrian paintings, aiming at the identification of materials used, their interaction and degradation. The technique of choice was Raman microscopy as it is a non-destructive tool, which provides the spatial resolution necessary for the study of heterogeneous samples. Pigments were identified together with products of microbiological degradation. Thermal convertion of goethite (yellow) to hematite (red) was followed by Raman spectroscopy in a tentative to address the issue of the provenance of red pigments (natural hematite or heated goethite) found in the paintings. White pigments were identified as calcite (CaCO3), whereas charcoal was used as black, goethite (α-FeOOH) as yellow and hematite (α-Fe2O3) as red. These pigments are usually found in rock art palletes. Degradation products from microbiological activity were identified by Raman microscopy and ATR infrared spectroscopy as being whewellite (CaC2O4.H2O) and weddelite (CaC2O4.2H2O). The topotatic transition from goethite to hematite was followed by in situ and ex-situ Raman and infrared spectroscopy, regarding the characterization of the phases formed, possible markers, aiming to complement the previous results reported in the literature using other techniques such as X-ray diffractometry (XRD) and transmission eletron microscopy (TEM). The main goal of the study of temperature effect on the Raman spectrum of goethite was to determine whether hematite was used as found in nature or was obtained by goethite heating as suggested in previous investigations. Particularly, the behavior of the 660 cm-1 band and a larger linewidth for bands in the spectrum, present in the disordered hematite and in the red pigments analysed, are markers of the thermal processing. These features seem to be related to the movement of iron ions and to the rearrangment of the octahedrical cage formed by oxygen atoms around them. Such conclusions are in agreement with X-ray data. Unfortunately, temperature is not the only factor to cause such structural disorder and, hence, it cannot be used as an unequivocal marker of thermal processing.
3

Espectroscopia Raman aplicada ao estudo de pigmentos em bens culturais: I - pinturas rupestres / Raman spectroscopy applied to the study of pigments in cultural goods: I - rupestrian paintings

Francisco Nascimento Lopes 14 March 2005 (has links)
Neste estudo amostras coletadas de pinturas rupestres foram analisadas para identificação do material utilizado; análises da sua interação e de processos eventuais de degradação, além de atribuições quanto à sua origem, foram também feitas através da espectroscopia Raman. Pigmentos encontrados em pinturas rupestres em Minas Gerais foram identificados, junto a produtos de degradação microbiológica. A partir dos resultados, foi feita uma caracterização da transformação de desidratação do pigmento amarelo de goetita (α-FeOOH) a hematita (α-Fe2O3) por espectroscopia Raman na tentativa de contextualizá-la no problema da origem da hematita encontrada nas representações. Foram identificados os pigmentos calcita (CaCO3) para o branco, carvão vegetal para o preto, goetita (α-FeOOH) para o amarelo e hematita (α-Fe2O3) para o vermelho, que constituem basicamente a paleta de cores desse período. Produtos de degradação microbiológica foram identificados por espectroscopia Raman e no infravermelho por ATR como sendo whewellita (CaC2O4.H2O) e weddelita(CaC2O4.2H2O). A transformação topotática de goetita a hematita por aquecimento foi acompanhada por espectroscopia Raman in situ e ex-situ e infravermelho, na tentativa de caracterizar o processo quanto às fases formadas, possíveis marcadores, de maneira a complementar resultados da literatura que utilizaram outras técnicas, como difração de raio-X (XRD) e microscopia eletrônica de transmissão (TEM). Esse estudo foi realizado na tentativa de determinar a existência de possível manipulação térmica desses materiais como sugerido em trabalhos anteriores. Em particular, nos espectros Raman, o comportamento diferenciado da banda em torno de 660 cm-1 e a maior largura das bandas de uma maneira geral, presentes na chamada hematita desordenada, perfil que as amostras naturais coletadas apresentam, são marcadores do efeito de temperatura, uma vez que parecem estar ligados mais estreitamente ao deslocamento catiônico dos íons Fe do que ao rearranjo da gaiola octaédrica de oxigênios ao redor destes, durante a transição a partir de goetita. Esse comportamento dos espectros Raman é confirmado pelos padrões dos difratogramas de raio-X. Concluiu-se que esse desordenamento, entretanto, não é causado somente pela temperatura e, dessa forma, não pode ser usado para atestar inequivocamente como sendo resultado de processamento dos materiais (goetita). / This dissertation reports the investigation carried out on samples collected from rupestrian paintings, aiming at the identification of materials used, their interaction and degradation. The technique of choice was Raman microscopy as it is a non-destructive tool, which provides the spatial resolution necessary for the study of heterogeneous samples. Pigments were identified together with products of microbiological degradation. Thermal convertion of goethite (yellow) to hematite (red) was followed by Raman spectroscopy in a tentative to address the issue of the provenance of red pigments (natural hematite or heated goethite) found in the paintings. White pigments were identified as calcite (CaCO3), whereas charcoal was used as black, goethite (α-FeOOH) as yellow and hematite (α-Fe2O3) as red. These pigments are usually found in rock art palletes. Degradation products from microbiological activity were identified by Raman microscopy and ATR infrared spectroscopy as being whewellite (CaC2O4.H2O) and weddelite (CaC2O4.2H2O). The topotatic transition from goethite to hematite was followed by in situ and ex-situ Raman and infrared spectroscopy, regarding the characterization of the phases formed, possible markers, aiming to complement the previous results reported in the literature using other techniques such as X-ray diffractometry (XRD) and transmission eletron microscopy (TEM). The main goal of the study of temperature effect on the Raman spectrum of goethite was to determine whether hematite was used as found in nature or was obtained by goethite heating as suggested in previous investigations. Particularly, the behavior of the 660 cm-1 band and a larger linewidth for bands in the spectrum, present in the disordered hematite and in the red pigments analysed, are markers of the thermal processing. These features seem to be related to the movement of iron ions and to the rearrangment of the octahedrical cage formed by oxygen atoms around them. Such conclusions are in agreement with X-ray data. Unfortunately, temperature is not the only factor to cause such structural disorder and, hence, it cannot be used as an unequivocal marker of thermal processing.

Page generated in 0.0214 seconds