• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Design, synthesis, characterization and luminescence properties of alkynylgold(I) complexes: strategies towardssupramolecular architectures and host guest chemistry

Yip, Sung-kong., 葉崇江. January 2005 (has links)
published_or_final_version / abstract / Chemistry / Doctoral / Doctor of Philosophy
2

Syntheses, photophysics and photochemistry of polynuclear d10 complexes of copper(I) and gold(I)

李維傑, Lee, Wai-kit. January 1995 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
3

Non-covalent weak interactions in group IV, PT(II) and AU(I) organometallic complexes: synthesis,structures and properties

Kui, Chi-fai., 居智輝. January 2005 (has links)
published_or_final_version / abstract / Chemistry / Doctoral / Doctor of Philosophy
4

Synthesis of gold and palladium thiolato complexes and their applications as sulfur dioxide sensors

10 March 2010 (has links)
M.Sc. / [AuCl(PPh3)] was reacted with mixed thiols in the presence of silver(I) oxide, resulting in complexes of the type [Au(SC6H4X)(PPh3)] X= Cl, NH2,CH2, forming silver chloride as a by-product. In addition to the above series [Au(SCH2(C6H4)3(2-C6H5(C6H4N)] was prepared via a different route, where [AuCl3(2-C6H5(C6H4N)] was reacted with benzyl mercaptan under reflux in the presence of silver(I) oxide for 3 h, forming silver chloride as a by-product. Palladium complex [PdCl2(2-C6H5(C6H4N)] was prepared by reacting [PdCl2(MeCN)] with 2-phenylpyridine at room temperature for 2 h. All complexes were characterized by 1H, 13C, 31P{H} NMR, IR, mass spectrometry and elemental analysis. Characterization of the starting materials [AuCl3(2-C6H5(C6H4N)] and [PdCl2(2- C6H5(6H4N)] by single crystal X-ray diffraction confirmed their chemical formula. All complexes were reacted with sulfur dioxide (SO2) and the reactions were monitored by electrochemistry and UV-vis spectroscopy. The electrochemical study of the complexes, using cyclic voltammetry (CV) and Osteryoung square wave voltammetry (OSWV), showed one anodic peak, which is due to gold(I/III) and an unresolved peak due to thiolate ligand. Upon bubbling of SO2 to the complexes, there was an immediate change of colour from clear to yellow, the CV results showing an increase in current of the gold(I/III) peak. UV-vis spectroscopy studies showed a shift of peak form 250-286 nm, upon bubbling of SO2 to complexes.
5

Design, synthesis and characterization of alkynyl- and thiolato-gold (I) complexes with various receptor groups for host-guestchemistry

He, Xiaoming, 何晓明 January 2010 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
6

Synthesis, characterization and photophysical properties of chalcogenido, phosphinidene and alkynyl complexes of gold (I) and itscongener and their supramolecular assembly arising from metal--metalinteractions

Lee, Kwok-ming., 李國明. January 2011 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
7

Syntheses and photophysics of luminescent polynuclear coinage metal complexes with chalcogen and pnictogen: containing bridging ligands

鄭重展, Cheng, Chung-chin. January 2001 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
8

Design and synthesis of metal phosphine complexes of palladium(II) andgold(I) with various receptor ligands for ion-controlled orphotoresponsive host-guest chemistry

Tang, Hau-san., 鄧巧珊. January 2006 (has links)
published_or_final_version / abstract / Chemistry / Doctoral / Doctor of Philosophy

Page generated in 0.0888 seconds