• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Proteomic and pharmacological analyses of the mechanism of actions of anticancer gold(I) complexes

Tian, Songhai, 田松海 January 2014 (has links)
Gold complexes have a long history of being used as therapeutic agents, especially in applications against immune diseases such as rheumatoid arthritis. In 1979, an oral gold(I) drug – auranofin (AuRF, brand name as Ridaura®) – was demonstrated to exhibit anticancer properties. Since then, a considerable number of gold(I) complexes have been reported to show remarkable anticancer activities, but the understanding of their mechanism of actions is limited. In the present study, AuRF and several other anticancer gold(I)-phosphine complexes including AuPEt ([Au(triethylphosphine)Cl]) were demonstrated to induce autophagy – a cellular catabolic process of macromolecules and organelles through lysosomal degradation. The induced autophagy involved the accumulation of autophagosomes, which was mediated by the enhancement of autophagy initiation rather than by the blockage of autophagosomes maturation. Moreover, the AuRF and AuPEt induced autophagy was demonstrated to have a pro-survival effect for the cancer cells. To better explore the mechanism of actions of AuRF and other anticancer gold(I) complexes, a subcellular fractionation-based proteomic approach has been developed and optimized. This approach combined the use of subcellular fractionation, protein extraction, HPLC-LTQ-Orbitrap mass spectrometry, and bottom-up protein identification and quantification. By using this approach, the proteome coverage was increased, the complexities of the sub-proteomes were reduced, and the low-abundant organelle proteins were enriched. The nuclear sub-proteomes of AuRF-treated or AuPEt-treated cells were analyzed to identify the significantly regulated transcription regulators and the signaling pathways involved. The analysis delineates the possible AuRF-activated anticancer pathways involving up-regulation of the tumor suppressor cyclin-dependent kinase inhibitor 2A (〖p14〗^ARF), inhibition of the E2F transcription activity, blocking of the translocation of E3 ubiquitin-protein ligase (MDM2) from nucleus to cytoplasm and induction of the tumor suppressor p53. Furthermore, the KeyNode-based pathway analysis was applied to analyze the whole proteomes obtained from merging the sub-proteomes. Alongside the p53 pathway and E2F network, the regulation of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR, the rate-limiting enzyme of cholesterol biosynthesis) is one of the most up-regulated pathways of AuRF treatment. AuRF also showed significant inhibition to HMGCR activity in vitro with an IC50 value at the micromolar level. The effects of AuRF and AuPEt on the high mobility group box-1 protein (HMGB1), which exhibits distinct functions dependent on its cellular locations, were investigated. Treatment of cells with AuRF or AuPEt resulted in down-regulation of nuclear HMGB1, which is associated with p53-dependent cytotoxicities. The cytoplasmic HMGB1, which can induce autophagy, was found to be up-regulated. The levels of secreted HMGB1, which exhibits pro-inflammatory properties, were reduced, possibly contributing to anti-rheumatoid arthritis actions of AuRF. Collectively, the pharmacological and proteomic analyses in this research of AuRF and other anticancer gold(I) complexes supplement the current knowledge of their mechanism of actions. / published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
2

The anti-cancer properties of cyclometalated gold(III) complexes and organogold(III) supramolecular polymers

Zhang, Jingjing, 张晶晶 January 2014 (has links)
Prompted by the successful clinical application of cisplatin in cancer therapy, worldwide efforts have been devoted to develop new metal-based drugs for anticancer treatment. Gold(III) complexes at first received attention as anti-cancer drug candidates because of their square-planar geometry which resembles that of platinum(II) complexes. Subsequent studies revealed that various gold(III) complexes displayed promising anti-cancer activities with different biological mechanisms. Although some achievements have been obtained in the development of anti-cancer gold(III) complexes, challenges including the improvement of bioavailability, stability and selectivity, elucidation of the action mechanisms, and the development of novel delivery approaches of gold(III) complexes to reduce systematic toxicity, remain to be exploited. A panel of anti-cancer complexes [AuIII(R-C^N)(L)]n+ (wherein HC^N is 2-phenylpyridine, L is biguanide or biuret) have been identified and described in Chapter 3. Biguanide or biuret have been employed to improve the solubility of the complexes in aqueous solutions. Meanwhile, the lipophilicity could readily be adjusted by varying the R group to obtain a balance between lipophilicity and aqueous solubility. Among the synthesized complexes, the cationic complexes, [AuIII(butyl-C^N)biguanide]Cl (3.1) and [AuIII(C^N)biguanide]Cl (3.2) are soluble in aqueous solutions with solubility over 5 mg/mL. Besides, introduction of butyl groups to 3.1 and [AuIII(butyl-C^N)biuret] (3.3) resulted in higher cellular uptake of gold, which might enhance their cytotoxic activities (IC50 values: 1.5–17 μM) compared with 3.2 and [AuIII(C^N)biuret] (3.4) (IC50 values: 9.4–47.3 μM). Moreover, 3.1 was also found to induce cell cycle arrest in S-phase and endoplasmic reticulum (ER) damage in human cervical epithelial carcinoma (HeLa) cells, and display significant anti-angiogenic activity at its sub-cytotoxic concentrations. In Chapter 4, a series of gold(III) complexes with dithiocarbamate and 2-phenylpyridine ligands to target deubiquitinases (DUBs), have been designed. These complexes achieved significant inhibition on purified DUBs. Notably, [AuIII(2-(4-nbutylphenyl) pyridyl)(diethyldithiocarbamate)]PF6 (4.1) inhibited both the purified (IC50 values: 46–223 nM) and cell-based DUBs activities with high efficiency. Its interaction with DUB UCHL1 and peptides which are present in several types of DUBs and contain active cysteine residue were confirmed by mass spectrometric analysis. All complexes displayed significant cytotoxicities, and those containing diethyldithiocarbamate ligand displayed specific cytotoxicity on breast cancer cells. Accumulation of a tumor suppressor p53, cell-cycle arrest, and apoptotic cell death were induced in breast cancer cells by 4.1. Besides, 4.1 also showed anti-angiogenic effects. These biological activities might be related with DUBs inhibition. In Chapter 5, a cytotoxic complex [AuIII(C^N^C)(4-dpt)](CF3SO3) (5.1, HC^N^CH = 2,6-diphenylpyridine; 4-dpt = 2,4-diamino-6-(4-pyridyl)-1,3,5-triazine) has been designed to self-assemble into supramolecular polymers (5.1-SP) in acetonitrile. In physiologically relevant solutions, 5.1-SP displayed a sustained-release property of the anti-angiogenic ligand 4-dpt, and in the presence of glutathione (GSH), [AuIII(C^N^C)-GSH] adduct(s) were also gradually released. The supramolecular polymers 5.1-SP also showed selective cytotoxicity toward cancerous cells, and could act as drug-carriers of other cytotoxic agents to achieve sustained-release behavior. / published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
3

Treatment of hepatocellular carcinoma with a novel gold compound

Lum, Ching-tung., 林菁潼. January 2005 (has links)
published_or_final_version / abstract / toc / Molecular Biology / Doctoral / Doctor of Philosophy
4

Studies of the effect of metal containing drugs on acute and chronic inflammation / Ian Ross Garrett

Garrett, Ian Ross January 1986 (has links)
Bibliography: leaves 211-260 / xvii, 260 leaves ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Pathology, 1986

Page generated in 0.0803 seconds