• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 45
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 50
  • 50
  • 50
  • 18
  • 17
  • 16
  • 16
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Relationship of base-metal skarn mineralization to Carlin-type gold mineralization at the Archimedes gold deposit, Eureka, Nevada

Hastings, Matthew H. January 2008 (has links)
Thesis (M.S.)--University of Nevada, Reno, 2008. / "December, 2008." Includes bibliographical references (leaves 95-101). Online version available on the World Wide Web.
12

Lateritisation and secondary gold distribution with particular reference to Western Australia

Coxon, Brian Duncan January 1993 (has links)
Lateritisation is associated with tropical climates and geomorphic conditions of peneplanation where hydromorphic processes of weathering predominate. Laterites are products of relative (residual) and absolute(chemical) accumulation after leaching of mobile constituents. Their major element chemistry is controlled by the aluminous character of bedrock and drainage. Bauxitisation is characterised by residual gibbsite neoformation and lateritisation, by both residual accumulation and hydromorphic precipitation of goethite controlled by the redox front at the water table. The laterite forms part of a weathering profile that is underlain by saprock, saprolite, the mottled zone and overlain by a soil horizon. The secondary gold in laterites has its source invariably with mineralised bedrock. The distribution of secondary gold is controlled by mechanical eluviation and hydromorphic processes governed by organic, thiosulphate and chloride complexing. The precipitation of secondary gold is controlled by pH conditions, stability of the complexing agent and ferrolysis. Gold-bearing laterites are Cainozoic in age and are best developed on stable Archean and Proterozoic cratons that have suffered epeirogenesis since lateritisation. Mechanical eluviation increases in influence at the expense of hydromorphic processes as a positive function of topographic slope and degradation rate. Gradients greater than 10⁰ are not conducive for lateritisation, with latosols forming instead. High vertical degradation rates may lead to the development of stone lines. In the Western Australian case, post-laterite aridification has controlled the redistribution of secondary gold at levels marked by stabilisation of the receding palaeowater table. Mineable reserves of lateritic ore are located at Boddington, Westonia and Gibson toward the south-west of the Yilgarn Block. A significant controlling variable appears to be the concentration of chloride in the regolith. Based on the Boddington model, the laterite concentrates the following elements from bedrock gold lodes: i) Mo, Sb, W, Hg, Bi and Au as mobile constituents. ii) As and Pb as immobile constituents. Geochemical sampling of ferruginous lag after bedrock and laterite has provided dispersed anomalies that are easily identifiable. "Chalcophile corridors" up to 150 km in length are defined broadly by As and Sb but contain more discrete anomalies of Bi, Mo, Ag, Sn, W, Se or Au, in the Yilgarn Block. The nature of the weathered bedrock, the tabular distribution of secondary gold ore deposition and the infrastructural environment lends the lateritic regolith to low cost, open-cut mining. The western Australian lateritic-gold model perhaps can be adapted and modified for use elsewhere in the world.
13

The exploration for and possible genesis of, some Archaean granite/gneiss-hosted gold deposits in the Pietersburg granite-greenstone terrane

Linklater, Michael Anthony Leonard Flanders January 1992 (has links)
Abstract The gold mineralization event within Archaean granite-greenstone terranes occurred during the late Archaean, and followed the intrusion of syn- to late-tectonic granitic plutons into previously deformed greenstone belts. An Archaean granite/gneiss-hosted gold deposit, in terms of this project, is classified as having a gold-assay cutoff of 1g/metric ton over widths of at least several metres, or higher grades over narrower widths and/or verbal descriptions that indicate such values. Fluid inclusion studies and isotopic data identify two possible origins for the auriferous fluids; namely magmatic and metamorphic. The exploration target according to the magmatic model, is a late-Archaean, hydrothermally altered, mineralized and fractured granitic intrusion preferably with a granodioritic or quartz-dioritic composition. The exploration target according to the metamorphic replacement model is a granitic stock that has intruded a zone of crustal weakness such as a shear zone, active during the late Archaean. Alternatively, the granitic intrusion should be affected by regionally extensive late-Archaean shearing. It should be hydrothermally altered, deformed and mineralized. Five areas within the Pietersburg granite-greenstone terrane were selected for the 'Regional Area Selection' phase of exploration for Archaean granite/gneiss-hosted gold deposits; namely Roodepoort, Waterval, Ramagoep, Moletsie and Matlala. Roodepoort contains a known granodiorite-hosted gold deposit; the Knight's Pluton, and served as an orientation survey for this project. The use and interpretation of LANDSAT images formed an integral part of exploration techniques; to assess their usefulness in the exploration of Archaean granite/gneiss-hosted gold deposits. Area selection criteria for granite/gneiss-hosted gold mineralization at Roodepoort are the major ENE-trending shear zone, the NNW-trending lineament and hydrothermal alteration, shearing, quartz-stockworks and sulphide mineralization within the Knight's Pluton. The origin of the gold within the Knight's Pluton is uncertain; both magmatic and metamorphic models are possibilities. Ongoing exploration is in progress at Roodepoort. The only area selection criterion for granite/gneiss-hosted gold mineralization at Waterval is the sericitized, subcropping granites located within trenches. Gold mineralization is insignificant. No area selection criteria for Archaean granite/gneiss-hosted gold mineralization were located at Ramagoep, Matlala and Moletsie. No further exploration is recommended for all these areas. The MES image interpretations were successful in identifying lineaments, granitic outcrops, greenstones, vegetation and soil cover. The Clay-iron images adequately differentiated betweeen iron-rich and clay-bearing areas. However, not all clay-bearing areas were associated with hydrothermal alteratian; field checks were necessary to discriminate between weathered granites and hydrothermally altered granites. The Wallis images served to locally enhance the contrasts of the MES and Clay-iron images.
14

The porphyry copper system and the precious metal-gold potential

Gendall, Ian Richard January 1994 (has links)
It has been established that porphyry copper/copper-gold deposits have formed from I Ma to 2 Ga ago. Generally, they are related to the Mesozoic-Cenozoic interval with few reported occurrences from the Palaeozoic or Precambrian. A reason cited is the erosion of these deposits which are often related to convergent plate margins and orogenic belts. Observations of the alteration and mineralisation within and around porphyry copper/copper-gold systems have been included in numerous idealised models. These alteration and mineralisation patterns are dependent on the phases of intrusion, the tectonic setting and rock type, depth of emplacement and relationship to coeval volcanics, physiochemical conditions operative within and surrounding the intrusive and many other mechanical and geochemical conditions. Island arc and cratonic arc/margin deposits are generally considered to be richer in gold than their molybdenum-rich, intra-cratonic counterparts. Metal zonation may occur around these copper/copper-gold deposits, e.g. copper in the core moving out to silver, lead, zinc and gold. This zonation is not always present and gold may occur in the core, intermediate or distal zones. Examples of gold-rich porphyry deposits from British Columbia, Chile and the SW Pacific Island regions suggest gold is closely associated with the potassic-rich zones. Generally these gold-rich zones have greater than 2% magnetite and a high oxygen fugacity is considered to be an important control for gold deposition. High Cl contents within the magma are necessary for gold mobility within the host intrusive centres. Beyond this zone HS₂ becomes an important transporting ligand. Exploration for porphyry copper-gold deposits includes an integrated geological, geophysical and geochemical approach. Petrographic work through to Landsat imagery may be used to determine the chemical conditions of the system, ore association, favourable structural zones and alteration patterns, in order to focus exploration activities.
15

Physico-chemical conditions of mineralization in the Sabie-Pilgrim's Rest Goldfield, Eastern Transvaal

Boer, Rudolf Hans 16 August 2016 (has links)
A dissertation submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg, for the Degree of Doctor of Philosophy Johannesburg, 1995 / A different class of mesothermal gold deposit at Sabie-Pilgrim’s Rest is described which is probably associated with the Bushveld igneous event in South Africa. Pressure and temperature estimates indicate that the ore-fluids of the Sabie-Pilgrim's Rest Goldfield, which occurs within the early Proterozoic Transvaal Supergroup, were similar to those of mesothermal gold deposits. [Abbreviated abstract. Open document ot view full version]
16

Gold exploration in tropical and sub-tropical terrains with special emphasis on Central and Western Africa

Breedt, Machiel Christoffel January 1996 (has links)
The aim of this dissertation is an attempt to' provide a general guide for future gold exploration in tropical and sub-tropical terrains. The dissertation includes a brief discussion of the various exploration techniques used in regional and local exploration. This provide the necessary background knowledge to discriminate between the constraints and applications and to be able to select the techniques which are more suitable for gold exploration in tropical and sub-tropical terrains. Weathering, gold geochemistry and soil formation, fields often neglected, are emphasized to illustrate the importance of the mobility and dispersion of gold in the weathering of the lateritic soil profile. A sound knowledge and experience in regolith mapping is to the advantage of the explorationist. Case studies with special emphasis on Central- and Western Africa are included to illustrate the effectiveness of some of the gold exploration techniques in tropical and sub-tropical terrains. Gold exploration is a highly complex and demanding science and to be successfull involves the full intergration of all geological, geochemical and geophysical information available. An intergrated exploration method and strategy would enhance the possibility of making viable discoveries in this highly competative environment where our mineral resources become more depleted every day. Where applicable, the reader is refered to various recommended literature sources to provide the necessary background knowledge which form an integral part of gold exploration.
17

The geology of the Cam and Motor Mine

Hartman, Louis W. 04 May 2015 (has links)
No description available.
18

A geological model of shear zone gold deposits in the Pietersburg Greenstone Belt, South Africa

Franey, N J 17 April 2013 (has links)
The Pletersburg greenstone belt Is located In South Africa, about 300 km northeast of Johannesburg. It hosts a significant amount of gold mineralization and just over 1000 kg of gold have been produced from Its various reefs and secondary deposits. The greenstone belt is interpreted as an Archean ophiolite complex. It comprlses a volcano-sedimentary succession (the Pletersburg Group) which Is subdivided Into a basal greenstone sequence, interpreted as oceanic crust, and an upper sedimentary cover sequence. A number of major shear zones, which are thought to represent thrusts that developed during the subduction of the greenstone sequence, form an integral part of the stratigraphy . Four stages of deformation (D₁-D₄) and four phases of metamorphism (H₁-H₄) (three of which are correlatable with the peak stages of deformation) are recognized. The primary gold deposits are all shear zones related. but they are subdivided into greenstone, sedimentation and granIte-hosted types. Geographically, they occur In three distinct goldfields: Eerstellng, Roodepoort and Marbastad. The greenstone-hosted · Plenaar-Doreen shear complex Is In the Eersteiing goldfield and hosts eight gold occurrences. Within the complex, Girlie North Reef is the 640m-long "pay" section of the Girlie North shear zone. This reef is characterized, macroscopically, by a Quartz-carbonate-chlorite-sulphlde assemblage and, mlcroscoplcally, by the presence of tourmaline, arsenopyrlte and Au. Geochemical evidence Indicates that mineralizing fluids were H₂O and CO₂-bearing and rich In S, K and Al. The wall rock alteratlon was Isochemlcal but Is manifest as a change In mineralogy from a hornblende + plagioclase assemblage to an actlnollte/tremollte + Quartz + clay assemblage. This Is best developed In the hangIng wall of the reef and is thought to have been caused by hydrogen ion metasomatism. The Arsenopyrite Reef was one of the main sediment-hosted shear zone gold producers In the Harabastad goldfield. This reef Is Interpreted as the basal margin of a shear zone whose top contact Is probably represented by the Quartz Vein Reef. The shear zone consists predomonantly of quartz and carbonate, and the two "pay" reefs are characterized by tourmallne. arsenopyrite and Au. No wall rock alteration was identified In this study, Based on the mineralogy and geochemical signature of the Girlie Nortn Reef and the Arsenopyrite Reef, It Is proposed that both were formed at the $The Pletersburg greenstone belt Is located In South Africa, about 300 km northeast of Johannesburg. It hosts a significant amount of gold mineralization and just over 1000 kg of gold have been produced from Its various reefs and secondary deposits. The greenstone belt is interpreted as an Archean ophiolite complex. It comprlses a volcano-sedimentary succession (the Pletersburg Group) which Is subdivided Into a basal greenstone sequence, interpreted as oceanic crust, and an upper sedimentary cover sequence. A number of major shear zones, which are thought to represent thrusts that developed during the subduction of the greenstone sequence, form an integral part of the stratigraphy . Four stages of deformation (D₁-D₄) and four phases of metamorphism (H₁-H₄) (three of which are correlatable with the peak stages of deformation) are recognized. The primary gold deposits are all shear zones related. but they are subdivided into greenstone, sedimentation and granIte-hosted types. Geographically, they occur In three distinct goldfields: Eerstellng, Roodepoort and Marbastad. The greenstone-hosted · Plenaar-Doreen shear complex Is In the Eersteiing goldfield and hosts eight gold occurrences. Within the complex, Girlie North Reef is the 640m-long "pay" section of the Girlie North shear zone. This reef is characterized, macroscopically, by a Quartz-carbonate-chlorite-sulphlde assemblage and, mlcroscoplcally, by the presence of tourmaline, arsenopyrlte and Au. Geochemical evidence Indicates that mineralizing fluids were H₂O and CO₂-bearing and rich In S, K and Al. The wall rock alteratlon was Isochemlcal but Is manifest as a change In mineralogy from a hornblende + plagioclase assemblage to an actlnollte/tremollte + Quartz + clay assemblage. This Is best developed In the hangIng wall of the reef and is thought to have been caused by hydrogen ion metasomatism. The Arsenopyrite Reef was one of the main sediment-hosted shear zone gold producers In the Harabastad goldfield. This reef Is Interpreted as the basal margin of a shear zone whose top contact Is probably represented by the Quartz Vein Reef. The shear zone consists predomonantly of quartz and carbonate, and the two "pay" reefs are characterized by tourmallne. arsenopyrite and Au. No wall rock alteration was identified In this study, Based on the mineralogy and geochemical signature of the Girlie Nortn Reef and the Arsenopyrite Reef, It Is proposed that both were formed at the same time. Textural evidence Indicates that tourmaline, arsenopyrite and Au were all very late In the paragenesis of minerallzatlon. The presence of tourmaline also Indicates a probable granite association. It Is proposed that the maln gold mineralizing event was synchronous with the Intrusion of granitoids (and therefore also with (D₁-D₄) and (H₁-H₄) and that most of the Au was derived from felsic magma. Gold was partitioned Into a magmatic hydrothermal fluid and then transported into the greenstone belt as a chlorIde complex. These magmatiC fluids were channelled up shear zones whIch had already been mineralized with a quartz-carbonate-chlorlte - sulphide assemblage by previous metamorphic fluidS. generated during the dynamic (D₂-related) H₂-phase of metamorphism. The Au was then deposIted as the result of a change In a fluid variable, such as temperature, pH, f0₂, or the activity of Cl (some Au may have been transported In a sulphur complex and so the activity of reduced 5 could also have been Important).
19

The nature and origin of gold mineralization in the Tugela valley, Natal Structural and Metamorphic Province

De Klerk, Ian Duncan January 1991 (has links)
The project area is situated within the Tugela Valley, located in the Northern Marginal Zone of the Natal Structural and Metamorphic Province, and this work outlines the different styles of gold mineralization found in the Tugela Valley. Two different styles have been recognized and both have economic significance:- 1) Epigenetic shear zone-hosted gold occurs in late-stage relatively undeformed thin quartz veins confined to shear zones, and is present in both the greenschist facies Natal Thrust Belt and the amphibolite facies Natal Nappe Complex. However the vast majority of these occurrences are concentrated within the thrust front (i.e. the Natal Thrust Belt). The gold grades (up to 7 g/t) and the hydrothermal alteration assemblages associated with the epigenetic deposits have been documented. 2) An as yet unrecognized occurrence of syngenetic gold mineralization is found associated with the sediment-hosted exhalative massive, to semi-massive, sulphides of the iThuma prospect, located within the amphibolite facies Natal Nappe Complex. Here gold (up to 3 g/t) is concentrated together with the main sulphide are, as well as some gold enrichment (230ppb) in the hydrothermally altered footwall feeder pipe. It is proposed that the epigenetic mineralization was formed as a consequence of the northward directed abduction of the major thrust slices of the Natal Nappe Complex. This increased the permeability of the rocks and provided channelways for the focussing of fluids. Deposition took place at the thrust front where metamorphic hydrothermal fluids interacted with meteoric water.
20

Surficial placer gold deposits

Mann, P L January 1994 (has links)
This review summarises the factors which control the formation and distribution of surficial gold placer deposits. Regional tectonic and climatic conditions as well as gold source are considered. The characteristics of eluvial, alluvial, marine, glacial and fluvioglacial gold placer deposits are described. Particular attention is paid to the gold grains within these placers. These gold grains have a distinctive morphology and chemical composition which reflect the manner in which they were transported, deposited and concentrated within the placers. The knowledge of the processes which lead to the formation and location of surficial gold placers is then used to guide exploration and target potential deposits, which can then be evaluated.

Page generated in 0.068 seconds