• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Computational Study Of Ethylene Epoxidation

Ozbek, Murat Olus 01 October 2011 (has links) (PDF)
This work computationally investigates the partial oxidation of ethylene (i.e. ethylene epoxidation) using periodic Density Functional Theory (DFT) on slab models that represent the catalyst surfaces. The mechanical aspects of the reaction were investigated on silver surfaces, which are industrially applied catalysts, for a wide range of surface models varying from metallic surfaces with low oxygen coverage to oxide surfaces. For comparison, the metallic and oxide phases of copper and gold were also studied. On these surfaces, the reaction paths and the transition states along these paths for the selective and non-selective reaction channels were obtained using the climbing image nudged elastic band (CI-NEB) method. In order to answer the question &ldquo / what is the relation between the surface state and the ethylene oxide selectivity?&rdquo / metallic (100), (110) and (111) surfaces of Cu, Ag and Au / and, (001) surfaces of Cu2O, Ag2O and Au2O oxides were studied and compared. For the studied metallic surfaces, it was found that the selective and non-selective reaction channels proceed through the oxametallacycle (OMC) intermediate, and the product selectivity depends on the relative barriers of the these channels, in agreement with the previous reports. However for the studied metallic surfaces and oxygen coverages, a surface state that favors the ethylene oxide (EO) formation was not identified. The studied Au surfaces did not favor the oxygen adsorption and dissociation, and the Cu surfaces favored the non-selective product (acetaldehyde, AA) formation. Nevertheless, the results of Ag surfaces are in agreement with the ~50% EO selectivity of the un-promoted silver catalyst. The catalyst surface in the oxide state was modeled by the (001) surfaces of the well defined Cu2O, Ag2O and Au2O oxide phases. Among these three oxides, the Cu2O is found not to favor EO formation whereas Au2O is known to be unstable, however selective for epoxidation. The major finding of this work is the identification of a direct epoxidation path that is enabled by the reaction of the surface oxygen atoms, which are in two-fold (i.e. bridge) positions and naturally exist on (001) oxide surfaces of the studied metals. Among the three oxides studied, only Ag2O(001) surface does not show a barrier for the formation of adsorbed epoxide along the direct epoxidation path. Moreover, the overall heat of reaction that is around 105 kJ/mol agrees well with the previous reports. The single step, direct epoxidation path is a key step in explaining the high EO selectivities observed. Also for the oxide surfaces, the un-selective reaction that ends up in combustion products is found to proceed through the OMC mechanism where aldehyde formation is favored. Another major finding of this study is that, for the studied oxide surfaces two different types of OMC intermediates are possible. The first possibility is the formation of the OMC intermediate on oxygen vacant sites, where the ethylene can interact with the surface metal atoms directly. The second possibility is the formation of a direct OMC intermediate, through the interaction of the gas phase ethylene with the non-vacant oxide surface. This occurs through the local surface reconstruction induced by the ethylene. The effect of Cl promotion was also studied. Coadsorption of Cl is found to suppress the oxygen vacant sites and also the reconstruction effects that are induced by ethylene adsorption. Thus, by preventing the interaction of the ethylene directly with the surface metal atoms, Cl prevents the OMC formation, therefore the non-selective channel. At the same time Cl increases the electrophilicity of reacting surface oxygen. The direct epoxidation path appears to be stabilized by coadsorbed oxygen atoms. Thus, we carry the discussions on the silver catalyzed ethylene epoxidation one step further. Herein we present that the EO selectivity will be limited in the case of metallic catalyst, whereas, the oxide surfaces enable a direct mechanism where EO is produced selectively. The role of the Cl promoter is found to be mainly steric where it blocks the sites of non-selective channel.
2

Density-functional Theory Applied To Problems In Catalysis And Electrochemistry

Kumar, Santosh 01 January 2006 (has links)
We study the structure and energetics of water molecules adsorbed at ceria (111) surfaces below one monolayer coverage using density-functional theory. The results of this study provide a theoretical framework for interpreting recent experimental results on the redox properties of water at ceria (111) surfaces. In particular, we have computed the structure and energetics of various absorption geometries at stoichiometric ceria (111) surface. In contrast to experiment results, we do not find a strong coverage dependence of the adsorption energy. For the case of reduced surface, our results show that it may not be energetically favorable for water to oxidize oxygen vacancy site at the surface. Instead, oxygen vacancies tend to result in water more strongly binding to the surface. The result of this attractive water-vacancy interaction is that the apparent concentration of oxygen vacancies at the surface is enhanced in the presence of water. Finally, we discuss this problem with reference to recent experimental and theoretical studies of vacancy clustering at the (111) ceria surface. We also describe the simulation results for the structure and dynamics of liquid water using the SIESTA electronic structure approach. We find that the structure of water depends strongly on the particular basis set used. Applying a systematic approach to varying the basis set, we find that the basis set which results in good agreement with experimental binding energies for isolated water dimers also provides a reasonable description of the radial distribution functions of liquid water. We show that the structure of liquid water varies in a systematic fashion with the choice of basis set. Comparable to many other first-principle studies of liquid water using gradient-corrected density functionals, the liquid is found to be somewhat overstructured. The possibility of further improvements through a better choice of the basis set is discussed. We find that while improvements are likely to be possible, application to large-scale systems will require use of a computational algorithm whose computational cost scales linearly with system size. Finally, we study the molecular and atomic adsorption of oxygen on the gold nano-clusters. We show multiple stable and metastable structures for atomically and molecularly adsorbed oxygen to the gold cluster. We plan to predict the reaction pathway and calculate activation energy barrier for desorption of molecular oxygen from the atomically adsorbed gold cluster which is very important for any catalytic reaction occurring using gold nanoparticles.

Page generated in 0.0257 seconds