• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Síntese total de ('+ ou -')- 2-amino- 1,3-propanodióis e das estiril-lactonas ('+ ou -')- Leiocarpina A e ('+ ou -')- Goniodiol / Total synthesis of ('+ or -')- 2-amino- 1,3-propanediols and the styryl-lactones ('+ or -')- Leiocarpin A and ('+ or -')- Goniodiol

Paioti, Paulo Henrique de Souza 19 August 2018 (has links)
Orientador: Fernando Antonio Santos Coelho / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-19T12:30:58Z (GMT). No. of bitstreams: 1 Paioti_PauloHenriquedeSouza_M.pdf: 5730346 bytes, checksum: eb0bd3db421c80ac63fc3cb0114e5157 (MD5) Previous issue date: 2011 / Resumo: Nesse trabalho, apresentamos duas novas aplicações para a reação de Morita-Baylis-Hillman (MBH). Inicialmente, adutos de MBH foram usados na preparação diastereosseletiva de diferentes 2-amino-1,3-propanodióis substituídos. Substâncias que apresentam esse padrão estrutural vem sendo recentemente utilizadas com sucesso como intermediários para a síntese de substâncias com elevado valor farmacológico e sintético. Baseado nesse fato, 2-amino-1,3-propanodióis com estereoquímica relativa anti foram facilmente sintetizados através de uma aminação redutiva de sistemas 2-oxo-1,3-propanodióis derivados de adutos de MBH. A diastereosseletividade observada na etapa de aminação redutiva foi indiretamente confirmada conduzindo os 2-amino-1,3-propanodióis à síntese de oxazolidin-2-onas. A fim de inferir a estereoquímica relativa das oxazolidin-2-onas foram usados experimentos de RMN baseados no efeito nuclear Overhauser (nOe), e também comparação com dados anteriormente publicados na literatura. Além desse trabalho, apresentamos também a síntese total da (±)-Leiocarpina A e do (±)-Goniodiol. Esses produtos naturais pertencem a classe das estiril-lactonas, uma nova classe de substâncias que foram isoladas de plantas do gênero Goniothalamus. Essas estiril-lactonas apresentam comprovada citotoxicidade e seletividade contra diversos tipos de células tumorais humanas. Em uma estratégia direta, um aduto de MBH foi utilizado como precursor para a síntese de um intermediário comum, um dissililoxialdeído, que por sua vez foi utilizado na síntese dos dois produtos naturais, a (±)-Leiocarpina A e o (±)-Goniodiol. Por fim, uma etapa de alilação seletiva nos permitiu apresentar também a síntese total diastereosseletiva da (±)-Leiocarpina A / Abstract: We report herein new synthetic applications of the Morita-Baylis-Hillman (MBH) reaction. Initially, we have described a new diastereoselective approach to substituted 2-amino-1,3-propanediols from MBH adducts. These structural moieties have been widely used as intermediates of several compounds with relevant pharmacological and synthetic interests. In this work, 2-amino-1,3-propanediols with anti relative stereochemistry were readily prepared via reductive amination of 2-oxo-1,3-propanediols MBH adducts derivatives. The diastereoselectivity of the reductive amination step was indirectly confirmed as leading the synthesis of oxazolidin-2-ones cores. In order to establish the relative stereochemistry of these oxazolidin-2-ones, NMR experiments, based on nuclear Overhauser effect (nOe), and comparison with the literature data, were successfully performed. We have also reported a total synthesis of (±)-Leiocarpin A and (±)-Goniodiol. These natural products belong to the class of styryl-lactones, a new type of interesting substances which have been isolated from Goniothalamus genus of plants. These compounds present potential citotoxicity and selectivity against different types of human tumor cells. In a straightforward strategy, a MBH adduct proceeded a common intermediate, disilyloxyaldehyde, that resulted in the target compounds, (±)-Leiocarpin A and (±)-Goniodiol. Finally, we described a diastereoselective synthesis of (±)-Leiocarpin A based on a selective allylation reaction / Mestrado / Quimica Organica / Mestre em Química
2

Enantiospecific Synthesis Of Bioactive Styryllactones

Dhaware, Madhuri Gautam 09 1900 (has links) (PDF)
The thesis entitled “Enantiospecific synthesis of bio-active stryllactones” comprise an introduction about stryllactone and two chapters describes the synthesis of stryllactones. Trees of the genus Goniothalamus of the plant family Annonaceae in South East Asia has been known for a long time for their proven as folkloric medicine. Stryryllactones were found to exhibit moderate to significant biological activity including antitumour, antifungal as well as antibiotic properties. Because of their unique and intriguing structures and the activity associated much effort has been centered on the development of methodology for the synthesis of these compounds. The structures and relative configurations of these compounds were determined either by X-ray crystallography or by extensive NMR spectral analysis and by mass spectroscopic techniques. The research group of McLaughlin isolated and characterized a series of styryllactones, possessing significant to marginal cytotoxic activity against human tumor cell lines. The structures and relative configurations of these compounds were determined either by X-ray crystallography or by extensive NMR spectral analysis. Classification of these styryllactones is based on the structural characteristics of the six different skeletons as shown in Figure 1. Figure 1:features styryllactone the genus In this thesis, enantioselective total synthesis of styryllactones ()-9-deoxygoniopypyrone 1, ()-goniopypyrone 2, ()-7-epi-goniofufurone 3, ()-7-epigoniodiol 4 and the putative structure of ()-etharvendiol 5 is presented. a) Total synthesis of ()-9-deoxygoniopypyrone, ()-goniopypyrone, ()-7-epigoniofufurone and ()-7-epi-goniodiol: Synthesis of the styrylalctones is relied on elaboration of the trihydroxy ester 11 derived from tartaric acid. Appropriate protection of the hydroxy groups and further modifications of the ester functionality (which can be transformed into the corresponding alcohol or aldehyde) is planned for the synthesis of the styryllactones 1-5. Accordingly, the bis-dimethylamide 9 derived from D-()-tartaric acid, was transformed to the -hydroxy amide 10 using a combination of Grignard reagent addition followed by reduction of the resultant ketone. Acid mediated deprotection of the acetonide with concomitant hydrolysis of the amide to the ester is accomplished in one pot by treating 10 with p-TSA in benzene/MeOH mixture Treatment of the trihydroxy ester with 2,2-dimethoxy propane in presence of p-TSA afforded the hydroxy ester 12 which was elaborated to the styrylalctones 9deoxygoniopypyrone, 7-epi-goniodiol, 7-epi-goniofufurone and goniopypyrone (Scheme-2). (Part of this work is published: Prasad, K. R.; Dhaware, M.G. Synlett. 2007, 11121114.; Prasad, K.R.; Dhaware, M.G. Synthesis 2007, 3697) b) Stereoselective synthesis of the putative structure of (+)-etharvendiol: In 1997, Bermejo et al isolated the styryl pyrone etharvendiol 5 from the ethanolic extract of stem bark from Goniothalamus arvensis. Hitherto, no synthesis of etharvendiol is reported in the literature. In this section, approach towards the synthesis of putative structure of etharvendiol will be discussed. Synthesis of etharvendiol 5 is anticipated by the elaboration of masked tetrol 15, comprising an alkene tether and four contiguous hydroxy groups installed with definite configuration. It is relied on exploiting the hydroxy directed lactonization via the oxidation of alkene in 15, and subsequent elaboration to 7. Bis-dimethylamide 9, derived from D-()-tartaric acid was identified as the suitable precursor for the synthesis of 15. Synthesis of masked tetrol 15 is accomplished from 9 involving a combination of selective Grignard additions and stereoselective reduction (Scheme 3). (For structural formula pl see the pdf file)

Page generated in 0.0246 seconds