Spelling suggestions: "subject:"deradation dde potentiel"" "subject:"deradation dee potentiel""
1 |
Système d'encapsulation multicouche pour la gradation de potentiel dans les modules de puissance : apport des matériaux nanocomposites à conductivité contrôlée / System of encapsulation multilayerfor the stress grading in power module : contribution of nanocomposite materials with controlled conductivityPelvillain, Cyril 23 January 2017 (has links)
De nos jours, une gestion optimale de l'énergie électrique est devenue un enjeu majeur. La conversion de l'énergie entre une source et sa charge est réalisée par un élément central : le convertisseur statique utilisé aussi bien pour des faibles puissances (quelques Watts) que pour des très fortes (plusieurs MWatt). La brique élémentaire est la cellule de commutation constituée de semi-conducteurs de puissance (à commutation commandée ou spontanée) généralement réunis au sein d'un " module de puissance ". La nécessaire réduction des volumes dans certaines applications (comme les systèmes embarqués par exemple) ainsi que l'augmentation des calibres de tensions des nouveaux semi- conducteurs grands gaps auront comme conséquence directe d'augmenter les contraintes sur les systèmes d'isolation des convertisseurs. Une répartition contrôlée de ces contraintes dans le volume présente alors un intérêt pour maintenir la fiabilité du système d'isolation. Il est donc nécessaire d'effectuer une caractérisation la plus large possible de l'ensemble des matériaux isolants utilisés dans le packaging des dits " modules de puissance ", ainsi qu'une bonne compréhension de leurs mécanismes de défaillances. Le travail présenté ici consiste en l'étude d'une nouvelle stratégie de répartition du potentiel dans le volume appelée gradation de potentiel. L'isolation de volume développée est un assemblage multicouche constitué d'un matériau à conductivité contrôlée (Epoxy/Graphene) jouant le rôle de gradateur et d'une fine couche isolante (parylène) assurant la tenue en tension. Différents outils, tant théoriques (simulation) qu'expérimentaux, ont été ainsi utilisés pour aider au dimensionnent du système d'isolation électrique. La modélisation par la méthode des éléments finis (MEF) permet-elle de prédéterminer la répartition de la contrainte (potentiel et champ électrique) dans une structure de test prédéfini ou de décrire l'étude de l'influence de la conductivité du matériau gradateur et de l'épaisseur du film sur la répartition des équipotentielles. D'un point de vue expérimental le film sélectionné a été caractérisé pour des épaisseurs comprises entre 10 et 40 µm. Le matériau à conductivité contrôlée a été ensuite élaboré puis caractérisé pour différents taux de chargement. Après l'incorporation du système d'isolation dans différentes structures tests (substrats métallisés et structure double face), différentes méthodes permettant de caractériser le système d'isolation ont été utilisées qu'il s'agisse de mesures directes de la contrainte électrique par sonde à champ nul (potentiel de surface) ou indirectes par des mesures de décharges partielles. L'isolation multi-couches présente des améliorations dans la répartition du potentiel mais aussi des limites d'utilisation en fonction de la conductivité du matériau gradateur. Cette isolation doit donc être dimensionnée au plus près des caractéristiques d'utilisation et offre une approche intéressante pour le dimensionnement des modules de puissances double face. / Nowadays, an optimal management of the electrical energy becomes a key point in electric systems. The conversion of energy is realized by a main component: the power converter. It is used as well for low power (few Watts) as for very high power (MWatts). The elementary block of the converters, is the switching cell made up of semiconductor power devices. The trend to reduce both the volume and the weight in many applications (for example in embedded systems) and the increase of the rating voltage of the new wide band gap semiconductors will have for consequence an increase of the stresses on the electrical insulating systems of the power module . A controlled grading of these electrical constraints in the volume is highly interesting to ensure the reliability of the system. It is therefore necessary to perform a precise characterization of the insulated materials used in the packaging of the power modules, as well as to get a good understanding of their failures mechanisms. The works presented in this dissertation consists in the study of a new strategy for the field gradation in power modules. The proposed insulation is an assembly of multi-layers made up of a thick material of electrically controlled conductivity (Epoxy/Graphene nanocomposite) and of a thin insulating layer (Parylene films). Various tools were used (both theoretical and experimental) to help dimensioning of the Electrical Insulation System (EIS). The Finite Element Method (FEM) was used to simulate the equipotential and field distribution in the structure under study and to analyse on one hand, the influence of the changes in the conductivity values of the Epoxy/Graphene nanocomposite materials and, on the other hand, the impact of the parylene (PA) films thickness on the stress grading. From an experimental point of view, the PA films were characterized for different thicknesses ranging between 10 µm and 40 µm. The Epoxy/Graphene nanocomposites of controlled conductivity were manufactured and characterized (0 to 5 % wt) for various filler contents. The field grading effects were evaluated directly in different structures thanks to surface potential measurements and (indirectly) to partial discharges measurements. The proposed multilayer EIS exhibits some improvements regarding the stress grading but also some limits depending on the conductivity of the nanocomposite. Such an EIS will have to be dimensioned taking into account the rating voltage and could offer an interesting approach for the future design of the power modules.
|
2 |
Nouveaux matériaux composites à gradient de permittivité structurés par un champ électrique et leur application pour la gradation de potentiel / New composite materials with permittivity gradient structured by an electric field and their application for field gradingLévêque, Louis 09 January 2017 (has links)
Les développements récents en électronique de puissance visent à augmenter la densité de puissance totale dans les systèmes de conversion d'énergie. Cela contraint alors de plus en plus les matériaux isolants, tels que l'encapsulation dans les modules de puissance. Si les renforcements de champ électrique au sein des polymères isolants atteignent des valeurs critiques, cela peut entraîner une activité de décharges partielles, des arborescences voire la rupture totale de l'isolation. L'objectif de cette thèse est d'étudier l'adaptation des propriétés diélectriques d'un polymère composite isolant afin de réduire les contraintes autour des zones de renforcements de champ électrique. Nous proposons une nouvelle approche de gradation de potentiel pour minimiser les renforcements de champ à travers une structuration locale du matériau composite sous forme d'un gradient de permittivité auto-adaptatif localisé là où les contraintes sont les plus intenses. Cette structuration est réalisée via l'application d'un champ électrique DC lors du procédé d'élaboration du matériau composite, permettant le déplacement par électrophorèse des particules. Le composite à gradient de permittivité est composé d'une matrice époxy chargée en particules à forte permittivité (titanate de strontium SrTiO3 ou titanate de baryum BaTiO3). L'action d'un champ électrique DC sur la résine liquide chargée en particules engendre leur accumulation vers l'électrode de plus fort potentiel, formant ainsi une couche fortement chargée, qui confère à cette région une permittivité plus élevée. Chaque région du composite structuré (zone de la couche accumulée et zone faiblement chargée en particules) a été caractérisée en termes de propriétés diélectriques (permittivité et pertes). Alors que la région des composites faiblement chargée en particules conserve une permittivité voisine de celle des composites homogènes, la couche accumulée présente une augmentation importante liée à l'augmentation de la densité de particules. Les concentrations en particules de chaque région du matériau structuré ont été déterminées précisément, et les valeurs de permittivités associées se corrèlent bien avec les valeurs de permittivité des matériaux composites homogènes de taux de chargement équivalent. Cela montre que la couche accumulée ne s'est pas organisée d'une façon particulière. Concernant la rigidité diélectrique de la couche accumulée, elle présente des valeurs suffisantes pour tenir les contraintes rencontrées et ses valeurs suivent la loi de puissance classique en fonction de l'épaisseur. Des simulations par éléments finis confirment l'intérêt de ces matériaux pour la minimisation des renforcements de champ électrique au niveau du point triple dans les modules de puissance. Ces résultats montrent tout le potentiel applicatif de ces nouveaux matériaux à gradient de champ. Ils pourraient permettre l'amélioration de la fiabilité et de la robustesse des modules de puissance et autres systèmes électriques travaillant sous fort champ. / New developments in power electronics allow increasing the power density of the conversion systems. This means that the insulating materials, such as the encapsulation in power modules, are more are more stressed. If the electric field reinforcements in insulating polymers reach critical values, this can lead to a partial discharge activity, electrical treeing and eventually a complete breakdown of the insulation. The objective of this thesis is to study the appropriate matching of the dielectric properties of insulating polymer composites in order to reduce the electrical stress in the regions of field reinforcement. A new approach to minimize the reinforcements is proposed through a local structuration of the composite material allowing an auto-adaptive permittivity gradient where the largest stresses are present. This structuration is achieved thanks to the application of a DC electric field during the elaboration process of the composite material, leading to the displacement of the particles by electrophoresis. The field grading material is an epoxy matrix filled with high permittivity particles (strontium titanate SrTiO3 or barium titanate BaTiO3). Applying a DC electric field on the liquid resin containing the particles induces their accumulation on the high voltage electrode, building an accumulated layer highly concentrated in particles, conferring to this region a higher permittivity. Each region of the structured composite (accumulated layer and low concentrated region) was characterized in terms of dielectric properties (permittivity and losses). While the low concentrated region of particles keeps a permittivity close to that of homogeneous composites one, the accumulated layer exhibits a significant increase due to the increase in the local particle content. The particle concentration in each region of the structured material were precisely determined, and the related permittivity values are in good agreement with the permittivity values of the homogeneous composite materials of the same filler content. This shows that the accumulated layer was not organized in a particular way. Regarding the dielectric strength of the accumulated layer, its values are large enough for the applications and these values follow the typical power law versus thickness. Finite element methods prove that these materials are appropriate for minimizing the electric field reinforcements at the triple point, between the metal, the ceramic and the encapsulation. These results highlight the interests of these new kind of field grading materials. They could allow improving the reliability and the robustness of power modules or other electrical systems working at high field.
|
Page generated in 0.1429 seconds