• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

APLICAÇÃO DE TÉCNICAS DE APRENDIZADO DE MÁQUINA PARA CLASSIFICAÇÃO DE DEPÓSITOS MINERAIS BASEADA EM MODELO TEOR-TONELAGEM / APPLICATION OF MACHINE LEARNING TECHNIQUES FOR CLASSIFICATION OF MINERAL DEPOSITS CONTENT-BASED MODEL TONNAGE

Rocha, Jocielma Jerusa Leal 01 July 2010 (has links)
Made available in DSpace on 2016-08-17T14:53:11Z (GMT). No. of bitstreams: 1 Jocielma Jerusa Leal Rocha.pdf: 3008647 bytes, checksum: 785c07837e5e5bb39cb7685000c9d145 (MD5) Previous issue date: 2010-07-01 / Classification of mineral deposits into types is traditionally done by experts. Since there are reasons to believe that computational techniques can aid this classification process and make it less subjective, the research and investigation of different methods of clustering and classification to this domain may be appropriate. The way followed by researches in this domain has directed for the use of information available in large public databases and the application of supervised machine learning techniques. This work uses information from mineral deposits available in grade-tonnage models published in the literature to conduct research about the suitability of these three techniques: Decision Tree, Multilayer Perceptron Network and Probabilistic Neural Network. Altogether, 1,861 mineral deposits of 18 types are used. The types refer to grade-tonnage models. Initially, each of these three techniques are used to classify mineral deposits into 18 types. Analysis of these results suggested that some deposits types could be treated as a group and also that the classification could be divided into two levels: the first level to classify deposits considering groups of deposits and the second level to classify deposits previously identified on a group into some of specific type belonging to that group. A series of experiments was carried out in order to build a two levels model from the combination of the techniques used, which resulted in an average accuracy rate of 85% of cases. Patterns of errors occurrence were identified within groups in types of deposits less representative in the database. This represents a promising way to achieve improvement in the process of mineral deposits classification that does not mean increasing in the amount of deposits used or in the amount of characteristics of the deposits. / A classificação de depósitos minerais em tipos tradicionalmente é feita por especialistas no assunto. A possibilidade de que técnicas computacionais auxiliem o processo de classificação e o torne menos subjetivo incentiva a pesquisa e aplicação de diferentes métodos de agrupamento e classificação sobre esse domínio de análise. A evolução das pesquisas nesse domínio tem direcionado os estudos para a utilização de informações disponíveis em grandes bases de dados publicadas e a aplicação de técnicas de aprendizado de máquina supervisionado. Este trabalho utiliza informações de depósitos minerais disponibilizadas em modelos teor-tonelagem publicados na literatura para proceder a investigação da adequabilidade de três dessas técnicas: Árvore de Decisão, Rede Percéptron Multicamadas e Rede Neural Probabilística. Ao todo, são 1.861 depósitos distribuídos em 18 tipos identificados pelo modelo teor-tonelagem. Inicialmente verificou-se o resultado apresentado por cada uma das três técnicas para a classificação dos depósitos em 18 tipos. A análise desses resultados sugeriu a possibilidade de agrupar esses tipos e dividir a classificação em dois níveis: o primeiro nível para classificar os depósitos considerando o agrupamento de tipos e o segundo nível para classificar os depósitos que resultaram em um grupo em um dos tipos específicos daquele grupo. Uma série de experimentos foi realizada no sentido de construir um modelo de classificação em dois níveis a partir da combinação das técnicas utilizadas, o que resultou em uma taxa de acerto média de 85% dos casos e as principais ocorrências de erros foram identificadas dentro de grupos em tipos de depósitos menos representativos na base de dados. Isso representa uma maneira promissora de conseguir melhoria no processo de classificação de depósitos minerais que não implica no aumento da quantidade de depósitos utilizada ou na quantidade de características dos depósitos.

Page generated in 0.0622 seconds