• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Polymer/Fullerene Photovoltaic Devices - Nanoscale Control of the Interface by Thermally-controlled Interdiffusion

Drees, Martin 11 June 2003 (has links)
In this thesis, the interface between the electron donor polymer and the electron acceptor fullerene in organic photovoltaic devices is studied. Starting from a bilayer system of donor and acceptor materials, the proximity of polymer and fullerene throughout the bulk of the devices is improved by inducing an interdiffusion of the two materials by heating the devices in the vicinity of the glass transition temperature of the polymer. In this manner, a concentration gradient of polymer and fullerene throughout the bulk is created. The proximity of a fullerene within 10 nm of any photoexcitation in the polymer ensures that the efficient charge separation occurs. Measurements of the absorption, photoluminescence, and photocurrent spectra as well as I-V characteristics are used to study the interdiffusion and its influence on the efficiency of the photovoltaic devices. In addition, the film morphology is studied on a microscopic level with transmission electron microscopy and with Auger spectroscopy combined with ion beam milling to create a depth profile of the polymer concentration in the film. Initial studies to induce an interdiffusion were done on poly(2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) as the electron donor polymer and the buckminsterfullerene C60 as the electron acceptor. Interdiffused devices show an order of magnitude photoluminescence quenching with concomitant increase in the photocurrents by an order of magnitude. Variation of the polymer layer thickness shows that the photocurrents increase with decreasing thickness down to 70 nm due to charge transport limitation. The choice of layer thickness in organic photovoltaic devices is critical for optimization of the efficiency. The interdiffusion process is also monitored in situ and a permanent increase in photocurrents is observed during the heat treatment. Transmission electron microscopy (TEM) studies on cross sections of the film reveal that C60 interdiffuses into the MEH-PPV bulk in the form of >10 nm clusters. This clustering of C60 is a result of its tendency to crystallize and the low miscibility of C60 in MEH-PPV, leading to strong phase separation. To improve the interdiffusion process, the donor polymer is replaced by poly(3-octylthiophene-2,5-diyl) (P3OT), which has a better miscibility with C60. Again, the photocurrents of the interdiffused devices are improved significantly. A monochromatic power conversion efficiency of 1.5 % is obtained for illumination of 3.8 mW/cm2 at 470 nm. The polymer concentration in unheated and interdiffused films is studied with Auger spectroscopy in combination with ion beam milling. The concentration profile shows a distinct interface between P3OT and C60 in unheated films and a slow rise of the P3OT concentration throughout a large cross-section of the interdiffused film. TEM studies on P3OT/C60 films show that C60 still has some tendency to form clusters. The results of this thesis demonstrate that thermally-controlled interdiffusion is a viable approach for fabrication of efficient photovoltaic devices through nanoscale control of composition and morphology. These results are also used to draw conclusions about the influence of film morphology on the photovoltaic device efficiency and to identify important issues related to materials choice for the interdiffusion process. Prospective variations in materials choice are suggested to achieve better film morphologies. / Ph. D.
2

Effects of Thickness, Morphology and Molecular Structure of Donor and Acceptor Layers in Thermally Interdiffused Polymer Photovoltaics

Gopal, Anamika 02 May 2007 (has links)
An in-depth study of concentration gradients in thermally-interdiffused polymer – fullerene photovoltaic devices, with a focus on thickness and heat treatments, is presented in this thesis. Device performance is improved from the bilayer by the creation of a concentration gradient of the donor and acceptor materials throughout the active layer of the device. Concentration gradients are expected to improve device performance by optimizing the charge transfer, transport and collection processes. This is achieved through heat-induced interdiffusion of the two materials at temperatures above the glass transition temperature of the polymer. Investigation of the poly(3-octylthiophene) (P3OT) – C₆₀ system show a three-fold improvement in the external quantum efficiencies (EQE) as compared with bilayer devices. Auger spectroscopy, combined with argon-ion beam milling, serves to record the concentration depth profile and identify concentration gradients in the device through detection of the sulfur in the P3OT backbone. Concentration gradients are optimized to yield the best devices through a thickness variation study conducted on the P3OT – C₆₀ system for fixed thermal interdiffusion conditions at 118 °C for 5 minutes. An optimum thickness of 40 to 60 nm is obtained for the two materials that yields the ideal morphology of a concentration gradient as recorded by Auger spectroscopy. For such devices, the concentration gradient is seen to extend through the device, ending in a thin layer of pure material at each electrode. A monochromatic power conversion efficiency of 2.05% is obtained for 5.3 mW/cm²⁺ illumination at 470 nm. A brief study is also presented to optimize the concentration gradient profile through variations of the thermal parameters. The dependence of the concentration gradient on the interdiffusion time and temperature is investigated. The merits of heat treatment on the crystallinity of P3OT and the overall device performance are also discussed. It is shown in some case that devices with annealed P3OT layers show almost twice the EQE as non-annealed P3OT layer devices. Potential alternatives for C₆₀ in interdiffused devices with P3OT have been presented. [6,6]-phenyl C₆₁-butyric acid methyl ester (PCBM), a well-investigated acceptor for blend devices, is studied as an acceptor in concentration gradient devices. A method for spin-coating uniform bilayers of P3OT and PCBM, without solution damage to either layer, is presented. A thermal variation study of the interdiffusion conditions on this system indicated higher interdiffusion temperatures and times are preferred for P3OT – PCBM systems. For interdiffusion at 150 °C for ten minutes, EQE values approaching 35 % at 500 nm are obtained. Auger spectroscopy studies on this system yielded the same conclusions about the concentration gradient device morphology that gives optimum device output. 1:1 and 1:2 blends of P3OT – PCBM are also studied. The influence of various thermal treatments on these devices is described. The endohedral fullerene Sc₃N@C₈₀ is introduced as a new acceptor material. The endohedral fullerene consists of Sc₃N cluster enclosed in a C₈₀ cage. An order of magnitude increase is seen in device performance upon sublimation of these molecules on a P3OT layer confirming its effectiveness as an acceptor. Preliminary studies done on this system indicated the need for greater thermal treatment to produce optimum concentration gradients. An in depth study for varying temperatures and times is presented. The best device performance was seen for interdiffusion at 160 °C for 25 minutes. The endohedral fullerene devices also show a long-term deterioration and so best result are presented from a set of devices fabricated within the same time period. The study of these three donor-acceptor systems confirms that the conclusions on the thickness dependence and device performance study conducted for the P3OT – C₆₀ system extend to other acceptors. A model of EQE for varying thicknesses based on absorption in the interdiffused concentration gradient regions is also presented. This model effectively highlights the influence of P3OT layer thickness on the trends observed in the EQE. It did not, however, reproduce the experimental thickness variation results for varying C₆₀ thicknesses. Incorporation of the effects of the electric field intensity distribution is expected to correct for this. Suggestions have been given on how this might be achieved. / Ph. D.

Page generated in 0.1179 seconds