Spelling suggestions: "subject:"9gradient descent method"" "subject:"cogradient descent method""
1 |
Fuzzy Control for an Unmanned HelicopterKadmiry, Bourhane January 2002 (has links)
<p>The overall objective of the Wallenberg Laboratory for Information Technology and Autonomous Systems (WITAS) at Linköping University is the development of an intelligent command and control system, containing vision sensors, which supports the operation of a unmanned air vehicle (UAV) in both semi- and full-autonomy modes. One of the UAV platforms of choice is the APID-MK3 unmanned helicopter, by Scandicraft Systems AB. The intended operational environment is over widely varying geographical terrain with traffic networks and vehicle interaction of variable complexity, speed, and density.</p><p>The present version of APID-MK3 is capable of autonomous take-off, landing, and hovering as well as of autonomously executing pre-defined, point-to-point flight where the latter is executed at low-speed. This is enough for performing missions like site mapping and surveillance, and communications, but for the above mentioned operational environment higher speeds are desired. In this context, the goal of this thesis is to explore the possibilities for achieving stable ‘‘aggressive’’ manoeuvrability at high-speeds, and test a variety of control solutions in the APID-MK3 simulation environment.</p><p>The objective of achieving ‘‘aggressive’’ manoeuvrability concerns the design of attitude/velocity/position controllers which act on much larger ranges of the body attitude angles, by utilizing the full range of the rotor attitude angles. In this context, a flight controller should achieve tracking of curvilinear trajectories at relatively high speeds in a robust, w.r.t. external disturbances, manner. Take-off and landing are not considered here since APIDMK3 has already have dedicated control modules that realize these flight modes.</p><p>With this goal in mind, we present the design of two different types of flight controllers: a fuzzy controller and a gradient descent method based controller. Common to both are model based design, the use of nonlinear control approaches, and an inner- and outer-loop control scheme. The performance of these controllers is tested in simulation using the nonlinear model of APID-MK3.</p> / Report code: LiU-Tek-Lic-2002:11. The format of the electronic version of this thesis differs slightly from the printed one: this is due mainly to font compatibility. The figures and body of the thesis are remaining unchanged.
|
2 |
Parameter learning and support vector reduction in support vector regressionYang, Chih-cheng 21 July 2006 (has links)
The selection and learning of kernel functions is a very important but rarely studied problem in the field of support vector learning. However, the kernel function of a support vector regression has great influence on its performance. The kernel function projects the dataset from the original data space into the feature space, and therefore the problems which can not be done in low dimensions could be done in a higher dimension through the transform of the kernel function.
In this paper, there are two main contributions. Firstly, we introduce the gradient descent method to the learning of kernel functions. Using the gradient descent method, we can conduct learning rules of the parameters which indicate the shape and distribution of the kernel functions. Therefore, we can obtain better kernel functions by training their parameters with respect to the risk minimization principle. Secondly, In order to reduce the number of support vectors, we use the orthogonal least squares method. By choosing the representative support vectors, we may remove the less important support vectors in the support vector regression model.
The experimental results have shown that our approach can derive better kernel functions than others and has better generalization ability. Also, the number of support vectors can be effectively reduced.
|
3 |
Fuzzy Control for an Unmanned HelicopterKadmiry, Bourhane January 2002 (has links)
The overall objective of the Wallenberg Laboratory for Information Technology and Autonomous Systems (WITAS) at Linköping University is the development of an intelligent command and control system, containing vision sensors, which supports the operation of a unmanned air vehicle (UAV) in both semi- and full-autonomy modes. One of the UAV platforms of choice is the APID-MK3 unmanned helicopter, by Scandicraft Systems AB. The intended operational environment is over widely varying geographical terrain with traffic networks and vehicle interaction of variable complexity, speed, and density. The present version of APID-MK3 is capable of autonomous take-off, landing, and hovering as well as of autonomously executing pre-defined, point-to-point flight where the latter is executed at low-speed. This is enough for performing missions like site mapping and surveillance, and communications, but for the above mentioned operational environment higher speeds are desired. In this context, the goal of this thesis is to explore the possibilities for achieving stable ‘‘aggressive’’ manoeuvrability at high-speeds, and test a variety of control solutions in the APID-MK3 simulation environment. The objective of achieving ‘‘aggressive’’ manoeuvrability concerns the design of attitude/velocity/position controllers which act on much larger ranges of the body attitude angles, by utilizing the full range of the rotor attitude angles. In this context, a flight controller should achieve tracking of curvilinear trajectories at relatively high speeds in a robust, w.r.t. external disturbances, manner. Take-off and landing are not considered here since APIDMK3 has already have dedicated control modules that realize these flight modes. With this goal in mind, we present the design of two different types of flight controllers: a fuzzy controller and a gradient descent method based controller. Common to both are model based design, the use of nonlinear control approaches, and an inner- and outer-loop control scheme. The performance of these controllers is tested in simulation using the nonlinear model of APID-MK3. / <p>Report code: LiU-Tek-Lic-2002:11. The format of the electronic version of this thesis differs slightly from the printed one: this is due mainly to font compatibility. The figures and body of the thesis are remaining unchanged.</p>
|
4 |
Algoritmos de adaptação do padrão de marcha utilizando redes neurais / Gait-pattern adaptation algorithms using neural networkGomes, Marciel Alberto 09 October 2009 (has links)
Este trabalho apresenta o desenvolvimento de algoritmos de adaptação do padrão de marcha com a utilização de redes neurais artificiais para uma órtese ativa para membros inferiores. Trajetórias estáveis são geradas durante o processo de otimização, considerando um gerador de trajetórias baseado no critério do ZMP (Zero Moment Point) e no modelo dinâmico do equipamento. Três redes neurais são usadas para diminuir o tempo de cálculo do modelo e da otimização do ZMP, e reproduzir o gerador de trajetórias analítico. A primeira rede aproxima a dinâmica do modelo fornecendo a variação de torque necessária para a realização do processo de otimização dos parâmetros de adaptação da marcha; a segunda rede trabalha no processo de otimização, fornecendo o parâmetro otimizado de acordo com a interação paciente-órtese; a terceira rede reproduz o gerador de trajetórias para um determinado intervalo de tempo do passo que pode ser repetido para qualquer quantidade de passos. Além disso, um controle do tipo torque calculado acrescido de um controle PD é usado para garantir que as trajetórias atuais estejam seguindo as trajetórias desejadas da órtese. O modelo dinâmico da órtese na sua configuração atual, com forças de interação incluídas, é usado para gerar resultados simulados. / This work deals with neural network-based gait-pattern adaptation algorithms for an active lower limbs orthosis. Stable trajectories are generated during the optimization process, considering a trajectory generator based on the Zero Moment Point criterion and on the dynamic model. Additionally, three neural network are used to decrease the time-consuming computation of the model and ZMP optimization and to reproduce the analitical trajectory generator. The first neural network approximates the dynamic model providing the necessary torque variation to gait adaptation parameters process; the second network works in the optimization procedure, giving the adapting parameter according to orthosis-patient interaction; and the third network replaces the trajectory generation for a stablished step time interval which can be reproduced any time during the walking. Also, a computed torque controller plus the PD controller is designed to guarantee the actual trajectories are following the orthosis desired trajectories. The dynamic model of the actual active orthosis, with interaction forces included, is used to generate simulation results.
|
5 |
Algoritmos de adaptação do padrão de marcha utilizando redes neurais / Gait-pattern adaptation algorithms using neural networkMarciel Alberto Gomes 09 October 2009 (has links)
Este trabalho apresenta o desenvolvimento de algoritmos de adaptação do padrão de marcha com a utilização de redes neurais artificiais para uma órtese ativa para membros inferiores. Trajetórias estáveis são geradas durante o processo de otimização, considerando um gerador de trajetórias baseado no critério do ZMP (Zero Moment Point) e no modelo dinâmico do equipamento. Três redes neurais são usadas para diminuir o tempo de cálculo do modelo e da otimização do ZMP, e reproduzir o gerador de trajetórias analítico. A primeira rede aproxima a dinâmica do modelo fornecendo a variação de torque necessária para a realização do processo de otimização dos parâmetros de adaptação da marcha; a segunda rede trabalha no processo de otimização, fornecendo o parâmetro otimizado de acordo com a interação paciente-órtese; a terceira rede reproduz o gerador de trajetórias para um determinado intervalo de tempo do passo que pode ser repetido para qualquer quantidade de passos. Além disso, um controle do tipo torque calculado acrescido de um controle PD é usado para garantir que as trajetórias atuais estejam seguindo as trajetórias desejadas da órtese. O modelo dinâmico da órtese na sua configuração atual, com forças de interação incluídas, é usado para gerar resultados simulados. / This work deals with neural network-based gait-pattern adaptation algorithms for an active lower limbs orthosis. Stable trajectories are generated during the optimization process, considering a trajectory generator based on the Zero Moment Point criterion and on the dynamic model. Additionally, three neural network are used to decrease the time-consuming computation of the model and ZMP optimization and to reproduce the analitical trajectory generator. The first neural network approximates the dynamic model providing the necessary torque variation to gait adaptation parameters process; the second network works in the optimization procedure, giving the adapting parameter according to orthosis-patient interaction; and the third network replaces the trajectory generation for a stablished step time interval which can be reproduced any time during the walking. Also, a computed torque controller plus the PD controller is designed to guarantee the actual trajectories are following the orthosis desired trajectories. The dynamic model of the actual active orthosis, with interaction forces included, is used to generate simulation results.
|
Page generated in 0.1133 seconds