• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 3
  • 1
  • Tagged with
  • 14
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Effets de plantes réputées antidiabétiques sur un modèle cellulaire hépatique de résistance à l’insuline induite par le palmitate

Afshar, Arvind 04 1900 (has links)
La pharmacopée Cris est riche en plantes médicinales et plusieurs d’entre elles sont étudiées par notre laboratoire pour leur potentiel antidiabétique. Certaines espèces ont démontré leur capacité à stimuler la protéine kinase activée par l’AMP (AMPK), une enzyme qui favorise la translocation de transporteurs de glucose à la membrane (effet hypoglycémiant). L’AMPK stimule également d’autres fonctions, telle l’oxydation des graisses, dans le but de rétablir l’énergie cellulaire. Ce projet a comme objectifs d’évaluer, premièrement, le stress métabolique induit par huit des extraits dans des cellules musculaires et des hépatocytes, effet qui serait responsable de l’activation de l’AMPK. Ce stress peut être déterminé en mesurant l’acidification du milieu extracellulaire ainsi que la déplétion du contenu en ATP des cellules suite aux traitements. Le deuxième objectif est de mesurer l’efficacité des extraits à réduire le contenu en gras (oxydation des graisses) et à ainsi normaliser la résistance à l’insuline dans des hépatocytes rendus insulino-résistants. Les hépatocytes sont rendus résistants à l’insuline (condition fortement lié à l’obésité) via traitement avec un acide gras saturé, le palmitate. Les résultats montrent que la majorité des extraits semble induire un stress métabolique de courte durée dans les cellules. Parmi les extraits, seul un a réussi à faire diminuer significativement le taux de triglycérides intracellulaire suite au traitement au palmitate sans toutefois améliorer la sensibilité à l’insuline. En conclusion, le potentiel hypoglycémiant des extraits serait du à leur capacité à affecter la respiration mitochondriale (stress métabolique). Toutefois, leur capacité à améliorer la sensibilité à l’insuline n’a pu être établie. / Cree pharmacopeia is rich in medicinal plants and many of them are studied by our laboratory for their antidiabetic potential. Some of the species tested have shown to activate the AMP-activated protein kinase (AMPK), an enzyme responsible for the translocation of glucose transporters to the cell membrane (hypoglycaemic activity). AMPK is also known to activate other cellular functions, like fat oxidation, in order to restore cell energy loss. The objectives of this study are, first, to measure the metabolic stress induced by eight of the species in muscular and liver cells, an effect believed to be responsible for the AMPK activation. Metabolic stress is evaluated by measuring extracellular medium acidification and cellular ATP depletion. The second objective is to assess the capacity of the extracts to clear intracellular fat (fat oxidation) and, by doing this, restore insulin sensitivity in insulin-resistant driven hepatocytes. To become insulin-resistant (a condition strongly linked to obesity), the hepatocytes are treated with a saturated fatty acid, palmitate. The results show that most of the extracts seem to increase the metabolic stress in muscular cells and hepatocytes for a short period of time. Among all extracts, only one has significantly reduced intracellular triglycerides in palmitate treated hepatocytes, an effect not followed by an increase in insulin sensitivity. In conclusion, the species tested in this study seem to exert their hypoglycaemic potential by affecting mitochondrial respiration (metabolic stress). However, the experimentations have not clearly shown the capacity of the species to restore insulin sensitivity in insulin-resistant liver cells.
12

Proprotein convertase subtilisin/kexin type 9 in human disease

Awan, Zuhier 02 1900 (has links)
Les maladies cardiovasculaires (MCV) demeurent au tournant de ce siècle la principale cause de mortalité dans le monde. Parmi les facteurs de risque, l’hypercholestérolémie et l’obésité abdominale sont directement liées au développement précoce de l’athérosclérose. L’hypercholestérolémie familiale, communément associée à une déficience des récepteurs des lipoprotéines de basse densité (LDLR), est connue comme cause de maladie précoce d’athérosclérose et de calcification aortique chez l’humain. La subtilisine convertase proprotéine/kexine du type 9 (PCSK9), membre de la famille des proprotéines convertases, est trouvée indirectement associée aux MCV par son implication dans la dégradation du LDLR. Chez l'humain, des mutations du gène PCSK9 conduisent soit à une hypercholestérolémie familiale, soit à une hypocholestérolémie, selon que la mutation entraîne un gain ou une perte de fonction, respectivement. Il demeure incertain si les individus porteurs de mutations causant un gain de fonction de la PCSK9 développeront une calcification aortique ou si des mutations entraînant une perte de fonction provoqueront une obésité abdominale. Dans cette étude, nous avons examiné : 1) l’effet d’une surexpression de PCSK9 dans le foie de souris sur la calcification aortique ; 2) les conséquences d’une déficience en PCSK9 (Pcsk9 KO), mimant une inhibition pharmacologique, sur le tissu graisseux. Nous avons utilisé un modèle de souris transgénique (Tg) surexprimant le cDNA de PCSK9 de souris dans les hépatocytes de souris et démontrons par tomographie calculée qu’une calcification survient de façon moins étendue chez les souris PCSK9 Tg que chez les souris déficientes en LDLR. Alors que le PCSK9 Tg et la déficience en LDLR causaient tous deux une hypercholestérolémie familiale, les niveaux seuls de cholestérol circulant ne parvenaient pas à prédire le degré de calcification aortique. Dans une seconde étude, nous utilisions des souris génétiquement manipulées dépourvues de PSCK9 et démontrons que l’accumulation de graisses viscérales (adipogenèse) apparaît régulée par la PCSK9 circulante. Ainsi, en l’absence de PCSK9, l’adipogenèse viscérale augmente vraisemblablement par régulation post-traductionnelle des récepteurs à lipoprotéines de très basse densité (VLDLR) dans le tissu adipeux. Ces deux modèles mettent en évidence un équilibre dynamique de la PCSK9 dans des voies métaboliques différentes, réalisant un élément clé dans la santé cardiovasculaire. Par conséquent, les essais d’investigations et d’altérations biologiques de la PCSK9 devraient être pris en compte dans un modèle animal valide utilisant une méthode sensible et en portant une attention prudente aux effets secondaires de toute intervention. / Cardiovascular disease (CVD) is the leading cause of death in the 21st century. Among risk factors, hypercholesterolemia and abdominal obesity are directly linked to premature development of atherosclerosis. Familial hypercholesterolemia, commonly due to low-density lipoprotein receptor (LDLR) deficiency, is known to cause premature atherosclerosis and aortic calcification in humans. Proprotein convertase subtilisin/kexin 9 (PCSK9), a member of the proprotein convertase family, is indirectly associated with CVD through enhanced LDLR degradation. Mutations in the human PCSK9 gene lead to either familial hypercholesterolemia or hypocholesterolemia, depending on whether the mutation causes a gain or a loss of function, respectively. It is uncertain if individuals carrying mutations causing a gain-of-function of PCSK9 will develop aortic calcification or whether loss-of-function mutations will lead to abdominal obesity. In this thesis, we investigated: 1) the effect of PCSK9 overexpression on aortic calcification; 2) the consequences of PSCK9 deficiency, mimicking pharmacological inhibition of PCSK9 on fat tissue. We employed a transgenic (Tg) mouse model overexpressing mouse PCSK9 and illustrated by micro-computerized tomography that calcification occurs to a lesser extent in PCSK9 Tg mice than in LDLR-deficient mice. While both PCSK9 Tg and LDLR deficiency caused familial hypercholesterolemia, circulating cholesterol levels alone could not dictate the degree of aortic calcification. In another study, we used genetically modified mice lacking PCSK9 and demonstrated that visceral fat accumulation (adipogenesis) is regulated by circulating PCSK9. Thus in the absence of PCSK9, visceral adipogenesis increases likely via post-translational regulation of very-low-density lipoproteins receptors (VLDLR) in the adipose tissue. In conclusion, these two studies highlight the dynamic balance of PCSK9 in different metabolic pathways, making it a key element in cardiovascular health. Consequently, attempts to survey and/or alter PCSK9 biology should be performed in a valid animal model using sensitive methods and with careful attention to side effects of any given intervention.
13

Proprotein convertase subtilisin/kexin type 9 in human disease

Awan, Zuhier 02 1900 (has links)
Les maladies cardiovasculaires (MCV) demeurent au tournant de ce siècle la principale cause de mortalité dans le monde. Parmi les facteurs de risque, l’hypercholestérolémie et l’obésité abdominale sont directement liées au développement précoce de l’athérosclérose. L’hypercholestérolémie familiale, communément associée à une déficience des récepteurs des lipoprotéines de basse densité (LDLR), est connue comme cause de maladie précoce d’athérosclérose et de calcification aortique chez l’humain. La subtilisine convertase proprotéine/kexine du type 9 (PCSK9), membre de la famille des proprotéines convertases, est trouvée indirectement associée aux MCV par son implication dans la dégradation du LDLR. Chez l'humain, des mutations du gène PCSK9 conduisent soit à une hypercholestérolémie familiale, soit à une hypocholestérolémie, selon que la mutation entraîne un gain ou une perte de fonction, respectivement. Il demeure incertain si les individus porteurs de mutations causant un gain de fonction de la PCSK9 développeront une calcification aortique ou si des mutations entraînant une perte de fonction provoqueront une obésité abdominale. Dans cette étude, nous avons examiné : 1) l’effet d’une surexpression de PCSK9 dans le foie de souris sur la calcification aortique ; 2) les conséquences d’une déficience en PCSK9 (Pcsk9 KO), mimant une inhibition pharmacologique, sur le tissu graisseux. Nous avons utilisé un modèle de souris transgénique (Tg) surexprimant le cDNA de PCSK9 de souris dans les hépatocytes de souris et démontrons par tomographie calculée qu’une calcification survient de façon moins étendue chez les souris PCSK9 Tg que chez les souris déficientes en LDLR. Alors que le PCSK9 Tg et la déficience en LDLR causaient tous deux une hypercholestérolémie familiale, les niveaux seuls de cholestérol circulant ne parvenaient pas à prédire le degré de calcification aortique. Dans une seconde étude, nous utilisions des souris génétiquement manipulées dépourvues de PSCK9 et démontrons que l’accumulation de graisses viscérales (adipogenèse) apparaît régulée par la PCSK9 circulante. Ainsi, en l’absence de PCSK9, l’adipogenèse viscérale augmente vraisemblablement par régulation post-traductionnelle des récepteurs à lipoprotéines de très basse densité (VLDLR) dans le tissu adipeux. Ces deux modèles mettent en évidence un équilibre dynamique de la PCSK9 dans des voies métaboliques différentes, réalisant un élément clé dans la santé cardiovasculaire. Par conséquent, les essais d’investigations et d’altérations biologiques de la PCSK9 devraient être pris en compte dans un modèle animal valide utilisant une méthode sensible et en portant une attention prudente aux effets secondaires de toute intervention. / Cardiovascular disease (CVD) is the leading cause of death in the 21st century. Among risk factors, hypercholesterolemia and abdominal obesity are directly linked to premature development of atherosclerosis. Familial hypercholesterolemia, commonly due to low-density lipoprotein receptor (LDLR) deficiency, is known to cause premature atherosclerosis and aortic calcification in humans. Proprotein convertase subtilisin/kexin 9 (PCSK9), a member of the proprotein convertase family, is indirectly associated with CVD through enhanced LDLR degradation. Mutations in the human PCSK9 gene lead to either familial hypercholesterolemia or hypocholesterolemia, depending on whether the mutation causes a gain or a loss of function, respectively. It is uncertain if individuals carrying mutations causing a gain-of-function of PCSK9 will develop aortic calcification or whether loss-of-function mutations will lead to abdominal obesity. In this thesis, we investigated: 1) the effect of PCSK9 overexpression on aortic calcification; 2) the consequences of PSCK9 deficiency, mimicking pharmacological inhibition of PCSK9 on fat tissue. We employed a transgenic (Tg) mouse model overexpressing mouse PCSK9 and illustrated by micro-computerized tomography that calcification occurs to a lesser extent in PCSK9 Tg mice than in LDLR-deficient mice. While both PCSK9 Tg and LDLR deficiency caused familial hypercholesterolemia, circulating cholesterol levels alone could not dictate the degree of aortic calcification. In another study, we used genetically modified mice lacking PCSK9 and demonstrated that visceral fat accumulation (adipogenesis) is regulated by circulating PCSK9. Thus in the absence of PCSK9, visceral adipogenesis increases likely via post-translational regulation of very-low-density lipoproteins receptors (VLDLR) in the adipose tissue. In conclusion, these two studies highlight the dynamic balance of PCSK9 in different metabolic pathways, making it a key element in cardiovascular health. Consequently, attempts to survey and/or alter PCSK9 biology should be performed in a valid animal model using sensitive methods and with careful attention to side effects of any given intervention.
14

Hedgehog interacting protein (Hhip) regulates both pancreatic and renal dysfunction in high fat diet-induced obese mouse model

Nchienzia, Henry 09 1900 (has links)
Hhip (Hedgehog interacting protein), un antagoniste de la voie de signalisation Hegehog (Hh) a était devouverte comme un antagoniste des 3 ligands Hh, soit Sonic (Shh), Indian (Ihh) et Desert (Dhh). La protéines Hhip régularise la fonction cellulaire autant par voie (Hh) canonique que non-canonique. Elle est formée de 700 acides aminés et est fortement exprimée dans les tissus riches en cellules endothéliales, comme les reins et le pancréas. Toutefois, son rôle dans le fonctionnement des cellules bêta matures soit en condition de bonne santé ou de maladie comme dans des conditions d’obésité provoquée par une diète riche en gras ainsi que son role dans les maladies chronique du rein et la dysfonction rénale. Les souris en déficience de Hhip (Hhip-/-) ont une malformation des ilots pancréatiques (une diminution de 45% des ilots et de 40% de la prolifération des cellules beta) et un problème pulmonaire qui cause la mort post-natale. L’objectif de notre étude initiale était de démontrer le role de Hhip dans le pancréas, en utilisant un KO corporel entier en réponse à une diète riche en gras (HFD) et la dysfonction des cellules beta in vivo et ex vivo sur des souris hétérozygotes pour Hhip (Hhip+/-) et des souris contrôles (Hhip +/+) Suite à une HFD, toutefois, les souris mâles et femelles HFD-Hhip+/+ ont développé une intolérance sévère au glucose (IPGTT) et cette intolérance a été améliorée chez les souris HFD-Hhip+/-. Associé a cette intolérance, les males HFD-Hhip+/- démontraient une hyperinsulinémie et leur taux d’insuline plasmatique (phase 1 et 2), contrairement aux souris males HFD-Hhip+/+, augmentait de façon significative. Dans les îlots de souris Hhip+/+, l’augmentation de Hhip induite par une HFD a été observée principalement dans les cellules bêta mais aucunement dans les cellules alpha. Sans varier le nombre total d’îlots et la quantité de cellules bêta, les souris mâles HFD-Hhip+/+ avaient un nombre supérieur de gros îlots dans lesquels le taux d’insuline était diminué. La structure de ces îlots était désorganisée, démontrant une évidente invasion des cellules alpha au coeur des îlots bêta, le stress oxidatif (8-OHdG et NADPH oxidase 2 (Nox 2)) est aussi augmentée. En revanche, chez les souris mâles HFD-Hhip+/-, il a été possible d’observer une augmentation du nombre de petits îlots, de la prolifération des cellules bêta, et aussi de la sécrétion d’insuline stimulée par le glucose (GSIS), une amélioration du stress oxidatif et un maintien de l’intégrité des îlots ont été démontré. In vitro, la protéine recombinante Hhip (rHhip) a accentué le stress oxidatif (Nox2 et l’activité de NADPH oxidase 2) et a causé une diminution du nombre de cellules bêta ; par contre, le siRNA-Hhip augmente le GSIS et abolit la stimulation de l’expression du gène Nox2 induite par le palmitate de sodium (PA)-BSA. Grace a ces observations, il est démontré que les genes Hhip pancréatiques inhibe la sécrétion d’insuline en altérant la structure des ilots et en favorisant l’expression du gene Nox2 dans les ilots en réponse à la dysfonction des cellules beta suite a une diète riche en gras HFD. Le diabète engendre des risques élevés de complication tel que des problèmes chroniques des reins caractérisés par une perte graduelle des fonctions rénales. Cette situation a été récemment reliée au taux élevé d’obésité. On a aussi démontré dans notre modèle de diabète gestationnel que l’augmentation de Hhip causait des irrégularités durant la néphrogénèse des rejetons [127]. Ensuite, nos données récentes démontrent que, chez les souris adultes, l’hyperglycémie a provoqué une forte expression du gene Hhip rénales causant ainsi l’apoptose des cellules épithéliales des glomérules et la transition endothéliale à mésenchymateuse (EndoMT) - liée à fibrose rénale [128]. Dans l’étude présente, on a établi que la surexpression de Hhip dans les cellules des tubules proximaux rénaux contribuait au développement initial des problèmes chroniques des reins suite a une HFD de 14 semaines. Un gain de poids significatif a été observé chez les souris du groupe HFD comparativement aux groupes ND. Les souris du groupe HFD ont développé une intolérance au glucose mais sans changement apparent à la sensibilité à l’insuline ni à l’hypertension (pression arterielle) même si ces souris mâles avaient des légers dépôts du gras périrénal. Les fonctions rénales telle que mesurées par le taux de filtration glomérulaire restaient normales dans tous les groupes révélant ainsi que ces deux facteurs (HFD et surexpression de Hhip) n’avaient aucune influence sur l’hyperfiltration rénale. Néanmoins, la morphologie rénale a révélé que les souris du groupe HFD présentaient une lésion infraclinique et des signes de vacuolisation tubulaire et des lésions par rapport aux souris ND. Cette pathologie de lésion tubulaire et de vacuolisation était plus prononcée chez les souris transgéniques (Hhip-Tg) que chez les souris non-Tg, ce qui favorisait l'apoptose des cellules tubulaires bénignes et un stress oxydatif accru. En conclusion, l'obésité provoquée par l'HFD a eu des effets néfastes sur la tolérance au glucose et de légères modifications morphologiques des reins, caractérisées par la présence d'une néphrose osmotique, une augmentation du stress oxydatif rénal et une apoptose pouvant être induites par une augmentation de la FABP4 rénale. Cela a été exacerbé par la surexpression de Hhip dans les tubules rénaux proximaux. / Hedgehog interacting protein (Hhip), a signaling molecule in the Hedgehog Hh pathway, was originally discovered as a putative antagonist of all 3 secreted Hh ligands, i.e., Sonic (Shh), Indian (Ihh), and Desert (Dhh). Hhip regulates cell function via either canonical- or non-canonical Hh pathway. Hhip encodes a protein of 700 amino acids, and is abundantly expressed in vascular endothelial cell-rich tissues, including the pancreas, and kidneys. To date, less is known about Hhip’s expression pattern in mature islet cells, and its function under normal and/or disease conditions, such as diet induced-obesity, as well as its role in chronic kidney disease, and kidney dysfunction. Hhip null mice (Hhip-/-) display markedly impaired pancreatic islet formation (45% reduction of islet mass with a decrease of beta cell proliferation by 40%), however Hhip-/- mice die shortly after birth mainly due to lung defects. In our first study, we systemically studied the role of pancreatic Hhip expression by using a whole body knock out in response to 8 weeks high fat diet (HFD) insult, and HFD-mediated beta cell dysfunction in vivo, ex vivo and in vitro using heterozygous (Hhip+/-) vs. wild type (Hhip+/+) mice. Both HFD-fed Hhip+/+ male and female mice developed severe glucose intolerance (IPGTT), which was ameliorated in male and female HFD-Hhip+/- mice. Associated with this glucose intolerance, was hyperinsulinemia, which was observed only in HFD-fed male Hhip+/- mice. HFD-fed Hhip+/- mice had high levels of circulating plasma insulin in both insulin secretion phases compared to HFD fed Hhip+/+ mice. In the pancreas, Hhip expression was increased in the islets of HFD-Hhip+/+ mice, mainly co-localized in beta cells and none in alpha cells. While maintaining the total islet number, and beta cell mass, male HFD-Hhip+/+ mice had a higher number of larger islets, in which insulin content was reduced; islet architecture was disoriented, with evident invasion of alpha cells into the central core of beta cells; and an evident increase in oxidative stress markers (8-OHdG and NADPH oxidase 2 (Nox 2)). In contrast, male HFD-Hhip+/- mice had a higher number of smaller islets, with increased beta cell proliferation, pronounced glucose stimulated insulin secretion (GSIS), ameliorated oxidative stress and preserved islet integrity. In vitro, recombinant Hhip (rHhip) dose-dependently increased oxidative stress (Nox2 and NADPH activity), and decreased the number of insulin-positive beta cells, while siRNA-Hhip enhanced GSIS, and abolished the stimulation of sodium palmitate (PA)-BSA on Nox2 gene expression. We believe our data highlights a novel finding as to how pancreatic Hhip gene inhibits insulin secretion, by altering islet integrity, and promoting Nox2 gene expression in beta cells in response to HFD-mediated beta cell dysfunction. Diabetes presents high risk factors associated with complications such as chronic kidney disease (CKD) characterized by a gradual loss in kidney function. The increased incidence of diabetic related kidney complications has been recently correlated with increase rate of obesity. We recently established that impaired nephrogenesis in kidneys of offsprings of our murine model of maternal diabetes was associated with upregulation of Hhip gene expression [127]. Subsequently, our recent data also shows that hyperglycemia induced increased renal Hhip gene expression in adult murine kidneys leading to apoptosis of glomerular epithelial cells and endothelial to mesenchymal transition (Endo-MT) - related renal fibrosis [128]. In this current study, we demonstrated how Hhip overexpression in renal proximal tubular cells, contributes to early development of chronic kidney disease after 14 weeks of HFD. Mice in HFD-fed groups showed significantly greater weight gain as compared to mice in ND fed groups. IPGTT revealed that HFD fed mice also developed glucose intolerance, with no apparent changes in insulin sensitivity. HFD did not impact hypertension, even though we had a modest trend of increase in perirenal fat deposit in the HFD fed subgroups. Renal function as measured by the glomerular filtration rate was normal in all four subgroups, indicating that neither HFD, nor Hhip overexpression promoted renal hyperfiltration. Nonetheless, renal morphology revealed HFD kidneys had subclinical injury, presented signs of tubular vacuolization and damage compared to ND fed mice. This pathology of tubular damage and vacuolization was more pronounced in HFD-fed transgenic (Hhip-Tg) mice compared to non-Tg mice, and this promoted mild tubular cell apoptosis and enhanced oxidative stress. In conclusion, HFD feeding-induced obesity led to detrimental effects on glucose toleranc,e and mild morphological changes in kidneys, characterized by the presence of osmotic nephrosis, increased renal oxidative stress, and apoptosis which might be mediated by an increase in renal FABP4. This was exacerbated by the over-expression of Hhip in the renal proximal tubules.

Page generated in 0.0288 seconds