• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Studies of structure-function relationship of components of multidrug efflux pumps and type I secretion systems

Polleichtner, Johann Georg. Unknown Date (has links) (PDF)
University, Diss., 2006--Würzburg.
2

Nachweis, Verbreitung und Bedeutung von N-Acyl-L-homoserinlactonen bei Gram-negativen Bakterien

Geisenberger, Otto. January 2000 (has links) (PDF)
München, Techn. Univ., Diss., 2000.
3

Studies of structure-function relationship of components of multidrug efflux pumps and type I secretion systems / Untersuchungen des Zusammenhangs zwischen Struktur und Funktion von Multidrug Efflux Pumpen und Typ I Sekretionssystemen

Polleichtner, Johann Georg January 2006 (has links) (PDF)
This work deals with channel-tunnel dependent multidrug efflux pumps and type I secretion systems, more concrete with the improved classification of the adaptor protein family, the characterization of the TolC-homologue protein HI1462 of Haemophilus influenzae, and the molecular characterization of the interaction between TolC and AcrA of Escherichia coli. / Diese Arbeit beschäftigt sich mit Channel-Tunnel-abhängigen Multidrug Efflux Pumpen und Typ I Sekretionssystemen, genauer gesagt mit der verbesserten Klassifikation der Familie der Adapter-Proteine, der Charakterisierung des TolC-homologen Proteins HI1462 aus Haemophilus influenzae, und der molekularen Charakterisierung der Interaktion zwischen TolC und AcrA aus Escherichia coli.
4

Funktionelle Analyse von Blochmannia floridanus, dem primären Endosymbionten der Rossameise Camponotus floridanus / Functional analysis of Blochmannia floridanus, the primary endosymbiont of the carpenter ant Camponotus floridanus

Stoll, Sascha January 2009 (has links) (PDF)
Ameisen der Gattung Camponotus beherbergen bakterielle Symbionten der Gattung Blochmannia in spezialisierten Zellen des Mitteldarms (Blochmann, 1882; Buchner, 1965; Sauer, 2000; Schröder et al., 1996). Die Genomsequenzierung dieser Symbionten zeigte, dass Blochmannia, ähnlich den Symbionten von Blattläusen, hauptsächlich Gene der Aminosäurebiosynthese beibehalten hat (Degnan et al., 2005; Gil et al., 2003). Die Relevanz dieser nahrungsaufwertenden Funktion konnte experimentell bestätigt werden (Feldhaar et al., 2007). Ein Schwerpunkt der vorliegenden Arbeit war die Aufklärung der dynamischen Interaktion der beiden Partner während des komplexen Lebenszyklus des holometabolen Wirtes. Frühere Studien deuteten darauf hin, dass die Symbiose vor allem während der Larven- und Puppenphasen von Bedeutung sein könnte (Feldhaar et al., 2007; Wolschin et al., 2004; Zientz et al., 2006). Mit fluoreszenter in situ Hybridisierung (FISH) und konfokaler Laserscanning Mikroskopie konnte in der vorliegenden Arbeit die Lokalisierung von B. floridanus während der wichtigsten Entwicklungsstadien aufgeklärt werden. Hierbei konnte gezeigt werden, dass die Symbionten schon im ersten Larvenstadium in spezialisierten Zellen um den Darm angeordnet sind, aber in späteren Stadien nicht, wie bisher angenommen, auf diese Bakteriozyten beschränkt sind, sondern bis zum Schlupf der jungen Arbeiterinnen massiv andere Darmzellen infizieren. Übereinstimmend mit Bestimmungen der Zellzahl in den verschiedenen Wirtsstadien ist die Anzahl der Symbionten gegen Ende der Metamorphose am höchsten. Die Symbiose degeneriert in sehr alten Arbeiterinnen, gut gefüllte Bakteriozyten werden jedoch noch monatelang beibehalten. Mit Macroarray- und qRT- PCR- basierten Transkriptomanalysen wurde die Expression der bakteriellen Gene in charakteristischen Entwicklungsstadien des Wirtes untersucht. Allgemein zeigen vor allem Gene für molekulare Chaperons und bestimmte bakterielle Grundfunktionen eine hohe Expression. Aber auch viele Gene, die möglicherweise wichtige Funktionen in der Symbiose besitzen, wie die Biosynthese essentieller Aminosäuren und das Recycling von Stickstoffverbindungen, zeigen ein hohes absolutes Transkriptlevel. Zudem besteht eine positive Korrelation zwischen dem Expressionsniveau und dem GC- Gehalt der Gene, die in dem höheren Selektionsdruck und damit einer geringeren Mutationsrate der essentiellen Gene begründet liegt (Schaber et al., 2005). Durch Proteinanalysen konnte bestätigt werden, dass die Faktoren mit der höchsten absoluten Transkription die dominanten Proteine der Symbionten darstellen. In den unterschiedlichen Entwicklungsstadien zeigen viele Gene eine deutliche Dynamik, deren Ausmaß aber, verglichen mit freilebenden Bakterien, gering ist. Aus den Expressionsprofilen aufeinanderfolgender Gene lassen sich mögliche Transkriptionseinheiten ableiten, die teilweise auch experimentell bestätigt wurden. Oftmals zeigen auch Gene, die nicht in Transkriptionseinheiten angeordnet sind, aber verwandten Stoffwechselwegen angehören, ähnliche Muster. Dies deutet auf das Vorhandensein grundlegender Genregulations-mechanismen hin, obwohl im Genom von B. floridanus nur noch sehr wenige Transkriptionsfaktoren codiert sind (Gil et al., 2003). Auf übergeordneter Ebene zeigt sich, dass bei Symbionten aus späten Puppenstadien viele symbioserelevante Gene im Vergleich zu Genen des Grundmetabolismus eine erhöhte Expression zeigen. Dies betrifft besonders die Biosynthese aromatischer und verzweigter Aminosäuren, die in diesen Stadien vom Wirt in hoher Menge benötigt werden, während die internen Reserven gleichzeitig zur Neige gehen. Dies äußert sich auch im deutlichen Abfallen der Speicherproteinmenge des Wirts gegen Ende der Puppenphase. Die festgestellte Veränderung der Symbiontenzahl übertrifft das geringe Ausmaß der Genregulation um ein Vielfaches. Die Bakterien liegen in jedem Stadium polyploid mit bis zu 100 Genomkopien vor, dieser Polyploidiegrad bleibt jedoch während der gesamten Wirtsentwicklung weitestgehend konstant. Somit scheint die Kontrolle des Wirts über die bakterielle Vermehrung der entscheidende Faktor dieser Symbiose zu sein. Die verbleibenden regulatorischen Fähigkeiten der Bakterien stellen möglicherweise eine Feinjustierung von optimierten Produktionseinheiten dar, deren Anzahl nach den Bedürfnissen des Wirtes verändert wird. Insgesamt konnten in der vorliegenden Arbeit neue Einblicke in das komplexe Zusammenleben von Blochmannia und Camponotus gewonnen werden, die zu einem besseren Verständnis der biologischen Funktion und der grundlegenden Mechanismen dieser Symbiose führen. Eine der wichtigsten Fragestellungen nach dem Sinn einer nahrungsaufwertenden Symbiose für einen Nahrungsgeneralisten konnte mit starken Hinweisen auf eine stadienabhängige Relevanz der Symbiose beantwortet werden, die den enormen evolutionären Erfolg dieser Ameisengattung erklären könnte.  / Ants of the genus Camponotus harbor bacterial endosymbionts of the genus Blochmannia in specialized cells of their midgut (Blochmann, 1882; Buchner, 1965; Sauer, 2000; Schröder et al., 1996). The complete sequencing of the symbiont’s genome revealed, that Blochmannia, comparable to the symbionts of aphids, mainly retained genes involved in the biosynthesis of essential amino acids (Degnan et al., 2005; Gil et al., 2003). The biological relevance of a nutritional upgrading by Blochmannia could be confirmed experimentally (Feldhaar et al., 2007). One focus of this thesis was the elucidation of the dynamic interactions between the two partners during the complex life cycle of the holometabolic host animal. Previous studies pointed towards a temporal relevance of this symbiosis especially during larval and pupal development (Feldhaar et al., 2007; Wolschin et al., 2004; Zientz et al., 2006). In this thesis the localization of B. floridanus could be documented throughout all life stages of the host by fluorescent in situ hybridization (FISH) and confocal laser scanning microscopy. A layer of densely filled bacteriocytes surrounding the gut could already be identified in first instar larvae. In contrast to previous assumptions, the bacteria are not restricted to these cells in later stages, as until the eclosion of the young adult workers bacteria massively infect other midgut cells. Concordant with previous findings, bacterial load is highest at the end of metamorphosis and symbiont numbers decrease in older workers, yet densely filled bacteriocytes are still visible after several months. The expression of the bacterial genes during characteristic life stages of the C. floridanus was assessed by macroarray and qRT- PCR- based experiments. In general, especially molecular chaperones, central basic metabolism and may putative symbiosis related factors like pathways leading to essential amino acids or nitrogen recycling show highest absolute expression levels. A positive correlation between expression level and GC- content of the genes can be observed, which is caused by a higher selection pressure and lower mutation rate of these essential factors (Schaber et al., 2005). Protein analyses confirmed the correlation between gene expression and translation of the most abundant factors. Many B. floridanus genes exhibit a dynamic expression during the different host stages but the extent of this gene regulation is modest as compared to free living bacteria. Expression profiles of genes located next to each other on the genome allow proposal of local transcription units, which were confirmed experimentally in several cases. Often genes that are not clustered locally but belong to related metabolic functions also exhibit similar expression patterns. This indicates the existence of basic mechanisms of gene regulation despite the low number of transcription factors annotated in the B. floridanus genome (Gil et al., 2003). In late pupal stages symbiosis related genes often show a higher expression compared to basic metabolic functions. This especially includes biosynthetic pathways for aromatic and branched amino acids, which are needed by the host at this stage in increased amounts, while internal storages are depleted. This could be demonstrated by the significant decrease in storage proteins of the host at the end of the pupal phase. The observed change in bacterial numbers per host exceeds the extent of bacterial gene regulation by far. The symbionts are polyploid in each host stage with up to 100 genome copies per cell. The degree of polyploidy is largely constant during host development. Thus the control over bacterial reproduction seems to be the decisive factor in this symbiosis. The residual regulatory capacities of the symbionts might represent a mechanism of fine tuning of a production unit that has been streamlined by evolution and whose numbers are adjusted according to the host’s needs. In conclusion, this thesis delivers new insights into the complex symbiosis of Blochmannia and Camponotus leading to a better understanding of its biological function and the underlying mechanisms. One of the central mysteries concerning the need of a symbiont for nutritional upgrading for an omnivorous host could be explained by a temporal, stage- dependent relevance of this symbiosis, possibly being the reason for the enormous evolutionary success of this ant genus.

Page generated in 0.3997 seconds