• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Syntactic and Semantic Analysis and Visualization of Unstructured English Texts

Karmakar, Saurav 14 December 2011 (has links)
People have complex thoughts, and they often express their thoughts with complex sentences using natural languages. This complexity may facilitate efficient communications among the audience with the same knowledge base. But on the other hand, for a different or new audience this composition becomes cumbersome to understand and analyze. Analysis of such compositions using syntactic or semantic measures is a challenging job and defines the base step for natural language processing. In this dissertation I explore and propose a number of new techniques to analyze and visualize the syntactic and semantic patterns of unstructured English texts. The syntactic analysis is done through a proposed visualization technique which categorizes and compares different English compositions based on their different reading complexity metrics. For the semantic analysis I use Latent Semantic Analysis (LSA) to analyze the hidden patterns in complex compositions. I have used this technique to analyze comments from a social visualization web site for detecting the irrelevant ones (e.g., spam). The patterns of collaborations are also studied through statistical analysis. Word sense disambiguation is used to figure out the correct sense of a word in a sentence or composition. Using textual similarity measure, based on the different word similarity measures and word sense disambiguation on collaborative text snippets from social collaborative environment, reveals a direction to untie the knots of complex hidden patterns of collaboration.

Page generated in 0.062 seconds