Spelling suggestions: "subject:"granulação dde dados."" "subject:"granulação dee dados.""
1 |
Detecção e Diagnóstico de Falhas com Redes Neurais sem PesosOliveira, José Carlos 20 April 2018 (has links)
Submitted by José Carlos Oliveira (jcarlos.jeq@hotmail.com) on 2018-07-25T17:12:40Z
No. of bitstreams: 1
Tese_Final_José_Carlos_Martins_Oliveira.pdf: 4601437 bytes, checksum: e063bb6da481b557eeb5ce50666f37fe (MD5) / Approved for entry into archive by Vanessa Reis (vanessa.jamile@ufba.br) on 2018-08-03T12:12:58Z (GMT) No. of bitstreams: 1
Tese_Final_José_Carlos_Martins_Oliveira.pdf: 4601437 bytes, checksum: e063bb6da481b557eeb5ce50666f37fe (MD5) / Made available in DSpace on 2018-08-03T12:12:58Z (GMT). No. of bitstreams: 1
Tese_Final_José_Carlos_Martins_Oliveira.pdf: 4601437 bytes, checksum: e063bb6da481b557eeb5ce50666f37fe (MD5) / CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) e CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) pelo apoio financeiro. / Sistemas de detecção e diagnóstico de falhas (FDD - Fault Detection and Diagnosis) têm sido largamente utilizados em processos industriais. A necessidade de detecção antecipada e segura de falhas em sistemas dinâmicos e reais provocou uma demanda crescente por processos de supervisão que integram os sistemas FDD. Neste contexto, o objetivo principal desta tese é abordar o problema de detecção e diagnóstico de falhas em problemas dinâmicos univariável e multivariáveis com base nas Redes Neural Sem Pesos (RNSP). As RNSP utilizam neurônios baseados em dispositivos de memórias RAM (Random Access Memories, memórias de acesso randômico ou aleatório) para o aprendizado das características intrínsecas nos dados de treinamento. Essas redes apresentam algoritmos de aprendizagem rápidos e flexíveis, precisão e consistência nos resultados, sem a necessidade de geração de resíduos e retreinamento das redes e um potencial elevado para o reconhecimento e classificação de padrões. Como resultado da pesquisa realizada, são propostos três sistemas de detecção e diagnóstico de falhas baseados no modelo neural sem pesos, conhecido como dispositivo WiSARD (Wilkie, Stonham e Aleksander’s Recognition Device, dispositivo de reconhecimento de Wilkie, Stonham e Aleksander). Os sistemas propostos contam também com as contribuições da seleção de atributos, de modelos estatísticos básicos e da lógica fuzzy para a formação dos padrões comportamentais apresentados às RSNP usadas. Para a validação dos sistemas propostos foram testados três estudos de caso. Um deles se refere a um problema real univariável com dados obtidos pelos sensores de temperatura do compressor de gás para a venda em uma Unidade de Processamento de Gás Natural (UPGN) da Petrobras, localizada no município de Pojuca na Bahia (UPGN-3-Bahia). O segundo simula uma planta industrial considerada como um benchmark na área de detecção e diagnóstico de falhas, e conhecida como Tennessee Eastman Process (TEP). O terceiro e último estudo de caso simula um reator tanque agitado continuamente (CSTR, Continuous Stirred Tank Reactor, reator tanque agitado continuamente). Os resultados apresentados comprovam a boa adaptação das RNSP para o problema de detecção e diagnóstico de falhas, com percentuais de acertos, na classificação, acima de 98%. / Fault Detection and Diagnosis (FDD) systems have been widely used in industrial processes. The need of detection anticipated and secure of failure in dynamic and real systems provoke to a growing demand for supervisory processes that integrate FDD systems. In this context, the main objective of this thesis is to approach the problem of detecting and diagnosing failures in univariate and multivariate dynamic problems based on Weightless Neural Networks (WNN). The RNSP uses neurons based on RAM (Random Access Memories) devices to learn the intrinsic characteristics in the training data. These networks use fast and flexible learning algorithms, which provide accurate and consistent results, without the need for residual generation or network retraining, and therefore they have great potential use for pattern recognition and classification. As result of the research, three systems of fault detection and diagnosis based on the weightless neural model, known as WiSARD device (Wilkie, Stonham e Aleksander’s Recognition Device, dispositivo de reconhecimento de Wilkie, Stonham e Aleksander) are proposed. The proposed systems also count with the contributions of the attribute selection, basic statistical models and fuzzy logic for the formation of behavioral patterns presented to the RSNP used. For the validation of the proposed systems, three case studies were tested. One of them refers to a real univariate problem with data obtained by temperature sensors of the gas of sale compressor of a Petrobras Natural Gas Processing Unit (NGPU) located in the city of Pojuca in Bahia (NGPU-3, Bahia). The second simulates an industrial plant considered as a benchmark in the area of fault detection and diagnosis and known as the Tennessee Eastman Process (TEP). The third and final case study simulates a continuous stirred tank reactor (CSTR, Continuous Stirred Tank Reactor). The results show the good adaptation of the RNSP to the problem of detection and diagnosis of failures with percentage of correctness in the classification above 98%.
|
Page generated in 0.0735 seconds