• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 13
  • 8
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pharmaceutical compounds; a new challenge for wastewater treatment plants

Dlugolecka, Maja January 2007 (has links)
<p>Analytical analyses conducted at the Himmerfjärden WWTP (285.000 PE connected) identified 70 pharmaceutical compounds belonging to different therapeutic classes. Such organic micropollutants at low detected concentration range of µg - ng l<sup>-1</sup> did not affect the treatment processes at WWTP. Results from analytical studies indicated continuous discharge of organic micropollutants to the surface water with a calculated load amounting to 1.51 kg day-1. Metoprolol, carbamazepine and naproxen were chosen for testing different removal methods. Oxygen Uptake Rate (OUR) tests were conducted to assess the bacterial activity of an activated sludge taken from a full scale aeration plant with the presence of selected target compounds.</p><p>A semi-technical scale membrane bioreactor ZeeWeed10™, treating final effluent from the Himmerfjärden WWTP (Sweden) was seeded with activated sludge from full scale biological stage. The membrane bioreactor (MBR) system placed after the final treatment appeared to be an insufficient technology for removal of residual amounts of organic micropollutants from WWTP effluents. Batch test studies with activated sludge taken from the membrane bioreactor and with application of granular activated carbon (GAC) filtration resulted in giving an overall assessment of removal efficiency. Metoprolol and carbamazepine tend to be resistant to the biodegradation process and in the dosed high concentration lead to bacterial cell decomposition in the activated sludge. Apparently, removal efficiency for naproxen exceeded the value of 46% with the spiked initial amount of 3.3 mg NAP g<sup>-1 </sup>MLSS. Application of the GAC filtration proved to be an efficient technique for removal of pharmaceutical compounds from treated wastewater.</p><p>Application of the statistical programme Modde7 was a time saving tool in studies of fouling occurrence. The effect of fouling phenomenon, which is a highly limiting factor for MBR performance, was minimised by adjusting the operational parameters as predicted by the Modde7 programme.</p>
2

Pharmaceutical compounds; a new challenge for wastewater treatment plants

Dlugolecka, Maja January 2007 (has links)
Analytical analyses conducted at the Himmerfjärden WWTP (285.000 PE connected) identified 70 pharmaceutical compounds belonging to different therapeutic classes. Such organic micropollutants at low detected concentration range of µg - ng l-1 did not affect the treatment processes at WWTP. Results from analytical studies indicated continuous discharge of organic micropollutants to the surface water with a calculated load amounting to 1.51 kg day-1. Metoprolol, carbamazepine and naproxen were chosen for testing different removal methods. Oxygen Uptake Rate (OUR) tests were conducted to assess the bacterial activity of an activated sludge taken from a full scale aeration plant with the presence of selected target compounds. A semi-technical scale membrane bioreactor ZeeWeed10™, treating final effluent from the Himmerfjärden WWTP (Sweden) was seeded with activated sludge from full scale biological stage. The membrane bioreactor (MBR) system placed after the final treatment appeared to be an insufficient technology for removal of residual amounts of organic micropollutants from WWTP effluents. Batch test studies with activated sludge taken from the membrane bioreactor and with application of granular activated carbon (GAC) filtration resulted in giving an overall assessment of removal efficiency. Metoprolol and carbamazepine tend to be resistant to the biodegradation process and in the dosed high concentration lead to bacterial cell decomposition in the activated sludge. Apparently, removal efficiency for naproxen exceeded the value of 46% with the spiked initial amount of 3.3 mg NAP g-1 MLSS. Application of the GAC filtration proved to be an efficient technique for removal of pharmaceutical compounds from treated wastewater. Application of the statistical programme Modde7 was a time saving tool in studies of fouling occurrence. The effect of fouling phenomenon, which is a highly limiting factor for MBR performance, was minimised by adjusting the operational parameters as predicted by the Modde7 programme. / QC 20101104
3

The applicability of advanced treatment processes in the management of deteriorating water quality in the Mid-Vaal river system / Zelda Hudson

Hudson, Zelda January 2015 (has links)
The main objective of this study was to determine the applicability of advanced water treatment processes namely granular activated carbon (GAC) adsorption, ultraviolet (UV) light disinfectant and ozone in the management of deteriorating water quality in the Mid-Vaal River system for drinking purposes. Both the scarcity and the deteriorating quality of water in South Africa can be addressed by investigating advanced water treatment processes such as GAC adsorption, UV light disinfectant and ozone. Previously disregarded water resources have the potential to be purified and advanced treatments can improve water quality where conventional water treatments have failed. In addition, advanced treatment processes can be applied to treat used water. The two sampling sites selected for the study, Rand Water Barrage (RWB) and Midvaal Water Company (MWC), are both located in the Middle Vaal Water Management Area with RWB upstream of MWC. RWB uses GAC adsorption and UV light disinfection and MWC uses ozone as pre- and intermediate treatment process steps for water purification. The quality of the source water at both sampling sites was determined by analysing the physical and chemical characteristics as well as the algal and invertebrate compositions of the source water. The physical and chemical water quality variables measured included pH, conductivity, turbidity, dissolved organic carbon (DOC), total organic carbon (TOC), total photosynthetic pigments (TPP), microcystin and geosmin. The source water of both sites was characterised as hypertrophic on account of high chlorophyll concentrations. The water quality of the two sites was distinctly different and a downstream change was observed. The source water of RWB was characterised by high microcystin, geosmin, DOC, TOC and conductivity measurements and dominated by Bacillariophyceae (diatoms) and Cyanophyceae (blue-green bacteria). Problematic species that were present in the source water of RWB included Aulacoseira sp., other unidentified centric diatoms, Pandorina sp., Anabaena sp., Microcystis sp., Oscillatoria sp., Cryptomonas sp., Ceratium sp. and Trachelomonas sp. The source water of MWC was characterised by high pH, turbidity and TPP measurements and was dominated by Chlorophyceae (green algae) and Bacillariophyceae (diatom) species. Problematic algal species that were present in the source water of MWC included Cyclotella sp., Coelastrum sp., Pediastrum sp. and Scenedesmus sp. The source water of MWC was deemed to be of a better quality due to the lower Cyanophyceae concentrations and lower microcystin levels. The invertebrate composition of both sites was similar with Rotatoria as the dominant invertebrate group. The efficacy of GAC adsorption/UV light disinfection/ozonation on restoring the physical and chemical characteristics of the source water at both sampling sites as well as the algal and invertebrate compositions was determined by ascertaining the nature of the change in or the percentage removal of a water quality variable. The potable water of both sites complied with the standards of water intended for domestic use except for the conductivity at RWB that was slightly elevated. The phytoplankton was removed effectively from the source water of both sites but the removal of invertebrates was unsatisfactory. GAC adsorption and filtration proved to be more effective in the removal of TPP, turbidity, DOC, microcystin and geosmin than ozone. Ozone effected an increase in DOC. UV light disinfection had no or little effect on restoring the water quality variables investigated in this study. / M (Environmental Sciences), North-West University, Potchefstroom Campus, 2015
4

The applicability of advanced treatment processes in the management of deteriorating water quality in the Mid-Vaal river system / Zelda Hudson

Hudson, Zelda January 2015 (has links)
The main objective of this study was to determine the applicability of advanced water treatment processes namely granular activated carbon (GAC) adsorption, ultraviolet (UV) light disinfectant and ozone in the management of deteriorating water quality in the Mid-Vaal River system for drinking purposes. Both the scarcity and the deteriorating quality of water in South Africa can be addressed by investigating advanced water treatment processes such as GAC adsorption, UV light disinfectant and ozone. Previously disregarded water resources have the potential to be purified and advanced treatments can improve water quality where conventional water treatments have failed. In addition, advanced treatment processes can be applied to treat used water. The two sampling sites selected for the study, Rand Water Barrage (RWB) and Midvaal Water Company (MWC), are both located in the Middle Vaal Water Management Area with RWB upstream of MWC. RWB uses GAC adsorption and UV light disinfection and MWC uses ozone as pre- and intermediate treatment process steps for water purification. The quality of the source water at both sampling sites was determined by analysing the physical and chemical characteristics as well as the algal and invertebrate compositions of the source water. The physical and chemical water quality variables measured included pH, conductivity, turbidity, dissolved organic carbon (DOC), total organic carbon (TOC), total photosynthetic pigments (TPP), microcystin and geosmin. The source water of both sites was characterised as hypertrophic on account of high chlorophyll concentrations. The water quality of the two sites was distinctly different and a downstream change was observed. The source water of RWB was characterised by high microcystin, geosmin, DOC, TOC and conductivity measurements and dominated by Bacillariophyceae (diatoms) and Cyanophyceae (blue-green bacteria). Problematic species that were present in the source water of RWB included Aulacoseira sp., other unidentified centric diatoms, Pandorina sp., Anabaena sp., Microcystis sp., Oscillatoria sp., Cryptomonas sp., Ceratium sp. and Trachelomonas sp. The source water of MWC was characterised by high pH, turbidity and TPP measurements and was dominated by Chlorophyceae (green algae) and Bacillariophyceae (diatom) species. Problematic algal species that were present in the source water of MWC included Cyclotella sp., Coelastrum sp., Pediastrum sp. and Scenedesmus sp. The source water of MWC was deemed to be of a better quality due to the lower Cyanophyceae concentrations and lower microcystin levels. The invertebrate composition of both sites was similar with Rotatoria as the dominant invertebrate group. The efficacy of GAC adsorption/UV light disinfection/ozonation on restoring the physical and chemical characteristics of the source water at both sampling sites as well as the algal and invertebrate compositions was determined by ascertaining the nature of the change in or the percentage removal of a water quality variable. The potable water of both sites complied with the standards of water intended for domestic use except for the conductivity at RWB that was slightly elevated. The phytoplankton was removed effectively from the source water of both sites but the removal of invertebrates was unsatisfactory. GAC adsorption and filtration proved to be more effective in the removal of TPP, turbidity, DOC, microcystin and geosmin than ozone. Ozone effected an increase in DOC. UV light disinfection had no or little effect on restoring the water quality variables investigated in this study. / M (Environmental Sciences), North-West University, Potchefstroom Campus, 2015
5

Comportamento de sistemas pós-filtros adsorvedores na remoção de compostos orgânicos precursores e subprodutos da desinfecção. / Behavior of post-filter adsorbers in the removal of organic precursors and disinfection byproducts.

Pereira, Claudia Mota Santos 14 August 2009 (has links)
O presente trabalho teve como objetivo avaliar a eficiência de pós-filtros adsorvedores constituídos de Carvão Ativado Granular (CAG) na remoção de compostos orgânicos precursores e na formação de subprodutos da desinfecção, em particular dos trialometanos (THM) na Estação de Tratamento de Água Alto da Boa Vista (ETA ABV), abastecida por reservatórios de água bruta com elevado grau de eutrofização. Os ensaios foram conduzidos em ETA Piloto composta por tanque de reservação de água filtrada, ozonizador, tanque de reservação de água ozonizada e 4 pós-filtros adsorvedores, sendo duas unidades dotadas de CAG de origem mineral e duas unidades dotadas de CAG de origem vegetal. Os filtros foram operados em paralelo, sendo que duas colunas foram alimentadas com água filtrada da ETA ABV (Filtro F3 CAG de origem mineral e Filtro F4 CAG de origem vegetal) e as outras duas alimentadas com água filtrada e ozonizada (Filtro F1 CAG de origem mineral e Filtro F2 CAG de origem vegetal). A avaliação da remoção de compostos orgânicos precursores e formação de subprodutos da desinfecção foi feita através de análises de carbono orgânico total (COT), UV-254 nm e formação de THM. A análise dos resultados gerados de julho de 2007 a dezembro de 2008 permitiu concluir que 93% do THM é formado nas primeiras 24 horas de contato da amostra com o cloro, simulando a pós cloração e pós alcalinização da ETA ABV. O processo de oxidação por ozônio não foi efetivo na remoção de THM instantâneo, visto que a média dos 38 valores de THM instantâneo para a água filtrada (17,8 ± 5,6 g/L) foi igual a média obtida para o THM instantâneo na água ozonizada. A remoção de THM pelos filtros de CAG foi mais significativa nos primeiros três meses de operação do sistema, apresentando remoção de 80% para os filtros com CAG de origem mineral e 70% para os filtros com CAG de origem vegetal, a partir do quarto mês de operação do sistema a remoção de THM caiu para um valor médio de 34%, o que mostra uma iminente saturação do leito adsorvedor. Os pós-filtros adsorvedores constituídos de CAG de origem mineral apresentaram melhor comportamento com respeito a remoção de THM e COT quando comparado com os pós-filtros dotados de CAG de origem vegetal. / The main purpose of this work was to evaluate the performance of a Granular Activated Carbon (GAC) post-filter adsorbers in the removal of organic precursors and in the formation of disinfection byproducts, especially trihalomethanes (THM) in Alto da Boa Vista Water Treatment Plant (ABV WTP), which takes raw water from a highly eutrophized reservoirs. The tests was conducted on a Pilot WTP composed of filtered water tank, ozonator, ozonized water tank, and four post-filter adsorbers: two units with mineral GAC media and two units with vegetal GAC media. The filters were operated in parallel, with two columns fed with filtered water from ABV WTP (F3 Filter mineral GAC and F4 Filter vegetal GAC) and the other fed with ozonized water (F1 Filter mineral GAC and F2 Filter vegetal GAC). The evaluation of the removal of organic precursors and the formation of disinfection byproducts was made through analysis of Total Organic Carbon (TOC), UV-254 nm and THM formation. The results generated from July 2007 to December 2008 showed that 93% of THM is formed in the first 24 hours of contact with the chlorine in the sample, simulating the post chlorination and post alkalinization of ABV WTP in samples of filtered water, ozonized water, and post-filter adsorbers effluent. Ozone oxidation process was not effective in removing THM. Was found the same instantaneous THM values in the filtered water (17.8 g/L± 5.6 g/L) and in the ozonized water. During the first three months of post-filter adsorber operation, THM removal efficiencies were around 80% for F1 and F3 (mineral GAC media) and around 70% for F2 and F4 (vegetal GAC media). After four months of operation, THM removal efficiencies decreased to 34% average value, thus indicative of GAC saturation. Regarding THM and TOC removal efficacy, the mineral GAC performed better than the vegetal GAC.
6

Comportamento de sistemas pós-filtros adsorvedores na remoção de compostos orgânicos precursores e subprodutos da desinfecção. / Behavior of post-filter adsorbers in the removal of organic precursors and disinfection byproducts.

Claudia Mota Santos Pereira 14 August 2009 (has links)
O presente trabalho teve como objetivo avaliar a eficiência de pós-filtros adsorvedores constituídos de Carvão Ativado Granular (CAG) na remoção de compostos orgânicos precursores e na formação de subprodutos da desinfecção, em particular dos trialometanos (THM) na Estação de Tratamento de Água Alto da Boa Vista (ETA ABV), abastecida por reservatórios de água bruta com elevado grau de eutrofização. Os ensaios foram conduzidos em ETA Piloto composta por tanque de reservação de água filtrada, ozonizador, tanque de reservação de água ozonizada e 4 pós-filtros adsorvedores, sendo duas unidades dotadas de CAG de origem mineral e duas unidades dotadas de CAG de origem vegetal. Os filtros foram operados em paralelo, sendo que duas colunas foram alimentadas com água filtrada da ETA ABV (Filtro F3 CAG de origem mineral e Filtro F4 CAG de origem vegetal) e as outras duas alimentadas com água filtrada e ozonizada (Filtro F1 CAG de origem mineral e Filtro F2 CAG de origem vegetal). A avaliação da remoção de compostos orgânicos precursores e formação de subprodutos da desinfecção foi feita através de análises de carbono orgânico total (COT), UV-254 nm e formação de THM. A análise dos resultados gerados de julho de 2007 a dezembro de 2008 permitiu concluir que 93% do THM é formado nas primeiras 24 horas de contato da amostra com o cloro, simulando a pós cloração e pós alcalinização da ETA ABV. O processo de oxidação por ozônio não foi efetivo na remoção de THM instantâneo, visto que a média dos 38 valores de THM instantâneo para a água filtrada (17,8 ± 5,6 g/L) foi igual a média obtida para o THM instantâneo na água ozonizada. A remoção de THM pelos filtros de CAG foi mais significativa nos primeiros três meses de operação do sistema, apresentando remoção de 80% para os filtros com CAG de origem mineral e 70% para os filtros com CAG de origem vegetal, a partir do quarto mês de operação do sistema a remoção de THM caiu para um valor médio de 34%, o que mostra uma iminente saturação do leito adsorvedor. Os pós-filtros adsorvedores constituídos de CAG de origem mineral apresentaram melhor comportamento com respeito a remoção de THM e COT quando comparado com os pós-filtros dotados de CAG de origem vegetal. / The main purpose of this work was to evaluate the performance of a Granular Activated Carbon (GAC) post-filter adsorbers in the removal of organic precursors and in the formation of disinfection byproducts, especially trihalomethanes (THM) in Alto da Boa Vista Water Treatment Plant (ABV WTP), which takes raw water from a highly eutrophized reservoirs. The tests was conducted on a Pilot WTP composed of filtered water tank, ozonator, ozonized water tank, and four post-filter adsorbers: two units with mineral GAC media and two units with vegetal GAC media. The filters were operated in parallel, with two columns fed with filtered water from ABV WTP (F3 Filter mineral GAC and F4 Filter vegetal GAC) and the other fed with ozonized water (F1 Filter mineral GAC and F2 Filter vegetal GAC). The evaluation of the removal of organic precursors and the formation of disinfection byproducts was made through analysis of Total Organic Carbon (TOC), UV-254 nm and THM formation. The results generated from July 2007 to December 2008 showed that 93% of THM is formed in the first 24 hours of contact with the chlorine in the sample, simulating the post chlorination and post alkalinization of ABV WTP in samples of filtered water, ozonized water, and post-filter adsorbers effluent. Ozone oxidation process was not effective in removing THM. Was found the same instantaneous THM values in the filtered water (17.8 g/L± 5.6 g/L) and in the ozonized water. During the first three months of post-filter adsorber operation, THM removal efficiencies were around 80% for F1 and F3 (mineral GAC media) and around 70% for F2 and F4 (vegetal GAC media). After four months of operation, THM removal efficiencies decreased to 34% average value, thus indicative of GAC saturation. Regarding THM and TOC removal efficacy, the mineral GAC performed better than the vegetal GAC.
7

Pretreatment options for municipal wastewater reuse using membrane technology

Hatt, Juliette W. January 2012 (has links)
Increasing freshwater scarcity across the world means that wastewater reclamation is being considered as a key method in which to meet the growing demand. Evolution of water reuse schemes where high quality product is required such as for indirect potable reuse has led to the adoption in recent years of the integrated membrane scheme using a combination of microfiltration or ultrafiltration with reverse osmosis membrane. However, despite technological advancements, these membranes are still prone to fouling resulting in increased costs through cleaning or replacement. This thesis aims to look at pretreatment to reduce the fouling propensity of the microfiltration membranes via a 600m3 /d pilot plant which was commissioned to investigate indirect potable reuse. A range of pretreatments including pre-screening, pre-coagulation, powdered activated carbon and granular activated carbon were assessed based on fouling amelioration, water quality improvement and cost analysis. Results showed that ferric sulphate dosing was the most effective in terms of reducing the reversible fouling rate especially at high turbidity loads enabling higher flux to be realised leading to a small cost benefit. Activated carbon proved the most effective pretreatment in terms of organic removal and a significant reduction in the irreversible fouling rate. However, the cost involved in using this as a pretreatment is significant compared to possible cost savings through reduced requirement for chemical cleaning. This pretreatment is only viable if it obviates the need for a separate organic removal process.
8

Adsorpce nízkomolekulární složky organických látek produkovaných fytoplanktonem na aktivním uhlí při úpravě vody / Adsorption of low molecular weight algal organic matter onto activated carbon during water treatment

Fialová, Kateřina January 2019 (has links)
This diploma thesis deals with the study of adsorption of low-molecular components of organic substances produced by phytoplankton - AOM (Algal Organic Matter) on AC (Activated Carbon) during drinking water treatment. For the experimental purpose in this thesis, there were used selected amino acids as low molecular substances of AOM that are difficult to remove by conventional water treatment process by coagulation. As adsorbent, there was used a detailed characterized of granulated activated carbon (GAC) - Filtrasorb TL 830 (FTL830) which is intended directly for the purpose of water treatment. There were realizing the equilibrium batch adsorption experiments with three different model amino acids - arginine (Arg), phenylalanine (Phe) and aspartic acid (Asp). There was investigated the efficiency of removing amino acid depending on the solution temperature and pH. Results of the adsorption experiments have shown that the temperature affects the adsorption efficiency. Adsorption is essentially described as an exothermic process but the adsorption of Arg and Phe from an aqueous solution to GAC occurs more efficiently at higher temperatures. It means that the adsorption is the endothermic process. In the case of Arg adsorption, the temperature was found to influence adsorption efficiency less than...
9

Adsorpce pesticidů na granulovaném aktivním uhlí při úpravě vody / Adsorption of pesticides onto granular activated carbon in water treatment process

Kopecká, Ivana January 2010 (has links)
The diploma thesis is aimed at adsorption processes during the removal of pesticides onto granular activated carbon (GAC) in the process of drinking water treatment. Adsorption onto GAC represents an efficient method for pesticides removal. High adsorption efficiency can be significantly reduced due to the occurrence of natural organic matter (NOM) in raw water, which involves AOM (Algal Organic Matter) produced by phytoplankton. Analogous to NOM, AOM probably affects adsorption of pesticides by two different mechanisms - a direct site competition and pore blockage effect, in dependence on the different molecular weight of particular AOM fractions. Equilibrium batch and kinetic adsorption experiments were performed using two types of GAC (Norit 1240 and Filtrasorb 400) and two pesticides (terbuthylazine and alachlor). In order to examine the effect of AOM on adsorption of pesticides, raw GAC and GAC preloaded by AOM were used. The effect of pH on the competitive adsorption of AOM was also evaluated. A solid phase extraction (SPE) method and gas chromatography with electron capture detection (GC-ECD) were used to determine pesticides in water samples. AOM was characterized using fractionation onto sorptive resins. The representation of apparent molecular weights of AOM proteins was determined by...
10

Adsorpce aminokyselin produkovaných fytoplanktonem na aktivním uhlí / Adsorption of AOM amino acids onto activated carbon

Čermáková, Lenka January 2015 (has links)
This diploma thesis deals with the efficiency and factors affecting the adsorption of AOM (Algal Organic Matter) amino acids (AAs) arginine (Arg), phenylalanine (Phe) and aspartic acid (Asp) onto granular activated carbon (GAC) Picabiol 12x40 (PIC). The efficiency of AOM AAs removal was studied in laboratory equilibrium and kinetic experiments and it was shown that the adsorption efficiency of the selected AAs is dependent on the structure of the molecule of AAs and the nature of the functional groups of their side chain, and more particularly to solution pH, which determines the nature and size and surface charge of AAs and GAC. In contrast to this, the ionic strength (IS) of solution had relatively low effect on the AAs adsorption. Arg adsorption efficiency increased with increasing pH and reached a maximum at pH 9, where AAs and GAC were oppositely charged, and this leads to attractive electrostatic interactions. In the case of Asp adsorption on PIC practically did not work. The reason is that under all experimental conditions Asp molecules and the surface of the PIC carried identical negative charge. This led to the strong electrostatic repulsion between Asp and PIC which prevented effective adsorption. In the case of Phe the adsorption decreases with increasing pH. Maximum adsorption...

Page generated in 0.0926 seconds