Spelling suggestions: "subject:"granular media filtration"" "subject:"cranular media filtration""
1 |
Transport and retention of silver nanoparticles in granular media filtrationKim, Ijung 24 October 2014 (has links)
The increasing use of engineered nanoparticles such as silver nanoparticles (AgNPs) has focused more attention on the transport of nanoparticles in natural and engineered systems. Despite a substantial number of studies on the transport of nanoparticles in groundwater flow conditions, other conditions such as those in granular media filtration in water treatment plant have not been fully explored. This study was designed to investigate the transport of AgNPs in granular media filtration with a relatively high filtration velocity (~2 m/hr) and a low influent AgNP concentration (~100 [mu]g/L). Effects of several physical and chemical parameters on the transport and attachment of AgNPs were examined, focusing on the colloidal filtration theory and particle-particle interaction, respectively. Regarding the transport of AgNPs, four physical parameters (filter depth, filtration velocity, filter media size, and AgNP size) were varied at a fixed chemical condition. Positively charged branched polyethylenimine (BPEI) capped AgNPs were chosen to examine the transport of AgNPs under electrostatically favorable attachment conditions. The effects of filter depth, filtration velocity, and filter media size on transport of AgNPs were adequately described by the well-known colloidal filtration model. However, deviation from the model prediction was apparent as the AgNP size became smaller, implying a possible variation of nanoparticle properties in the smaller size such as 10 nm. In the AgNP attachment study, negatively charged citrate- and polyvinylpyrrolidone (PVP)-capped AgNPs were employed to examine the chemical effects on particle (AgNP)-particle (filter media) interaction. When the ionic strength and ion type in the background water were varied, the attachment of citrate AgNPs followed the DLVO theory. Ca- or Mg-citrate complexation was found to lead to charge neutralization, resulting in a greater AgNP deposition onto the filter media. However, PVP AgNPs were only marginally affected by the electrostatic effect, demonstrating a stronger stabilizing effect by PVP than citrate. When natural organic matter (NOM) was introduced in the background water, the deviation from the DLVO theory was considered primarily due to the steric interaction by NOM coating onto particles. Different amounts of AgNP deposition for different types of NOM suggest the variation of steric effects according to the molecular weight of NOM. The deposition of humic acid-coated AgNPs was similar regardless of the capping agent, indicating the possible displacement of the capping agent by NOM. The electrostatic and steric interactions affected the detachment of AgNPs as well as the attachment of AgNPs. The amount of detachment depended on the depth and width of the secondary energy minimum. Also, the detachment was enhanced with NOM coating, probably due to a weak attachment by the steric effect. However, the hydrodynamic force employed in this study was insufficient to yield a remarkable detachment. Overall, the retention profile was a relatively vertical line (i.e., equal deposition with depth) when the AgNP aggregation was prevented by the electrostatic or steric repulsion, implying homogeneous AgNP capture throughout the filter bed. On the other hand, ripening (the capture of particles by attraction to previously retained particles) was favored at the top of the filter bed when the AgNP aggregation was allowable. / text
|
2 |
Exploring Pretreatments for the Solar Water Disinfection (SODIS) ProcessHirtle, Lacey Elizabeth January 2008 (has links)
The use of sunlight for water disinfection has been practiced since ancient times. Only in the last three decades has solar disinfection become widely recognized as a viable means of providing safe drinking
water to the disadvantaged portion of the world’s population. The World Health Organization estimates that 1.6 million people die every year because of waterborne diseases.
<br/><br/>
The Swiss Federal Institute of Environmental Science and Technology and their Department of Water and Sanitation in Developing Countries have been instrumental in propagating the solar water disinfection (SODIS) process in developing countries. The reason for this technology being widely
used and accepted is its ease of use and effectiveness: water is placed in clear plastic bottles and exposed to direct sunlight for approximately six hours. The microorganisms in the water absorb the
sunlight and it, in turn at sufficient UV dosages, causes mutations to their genetic material, inhibiting reproduction. Although some pathogens may still be viable they are no longer infective. The result is
microbiologically safe water.
<br/><br/>
Research to date has explored everything from which colour and size the SODIS containers should be to whether adding catalysts to the water before exposure improves disinfection. Apart from a few studies that examined the effect of shaking the bottles (to entrain air) before exposure, there has been
limited research on pretreatments for enhancing solar disinfection.
<br/><br/>
The focus of this project was to explore two pretreatments for SODIS and determine how they affect the efficiency of the process. The first stage was to examine one of the currently used pretreatments:
cleaning the water containers before use. The second stage was to develop an accessible, low-cost filtration technique to remove particles from the water before exposure to sunlight. Particles in the water disperse the light and protect the microorganisms from being inactivated, so it is important to
have as few particles as possible; the recommended upper limit is 30 NTU for solar disinfection. In many instances, surface water with high turbidity (greater than 200 NTU) serves as the only source for drinking water in developing areas.
<br/><br/>
The first series of experiments in the current research evaluated if cleaning the bottles was necessary and if so, which cleaning agents would be most effective and available. The agents selected were 70%
isopropyl alcohol, a soap-water mixture, and lime juice. The experiments demonstrated that cleaning with 70% isopropyl alcohol did not affect the process in any way. Cleaning with the soap-water mixture did have a slightly negative effect on the process; there was substantial microbial recovery when bottles were kept in the dark overnight. In the case of the lime juice, it actually inhibited the
disinfection process. It is necessary to remove any debris that might exist within the containers before using them, but using a chemical cleaning agent or mechanically scrubbing can decrease the amount of
disinfection that occurs during SODIS. Thus, it is suggested that using a chemical pretreatment is not necessary and has the potential to inhibit disinfection, especially without proper training or technical
knowledge.
<br/><br/>
The second series of experiments identified the optimal design for a low-cost roughing filter that could be used to remove particles from water before exposure to sunlight. The roughing filter that was built from the same plastic pop bottles used for solar disinfection, as well as gravel and sand. It was constructed with three centimetres of gravel on the bottom of the pop bottle and then 17 cm of coarse sand was added on top to make the total filter height 20 cm. A 0.6 mm hole was made at approximately 1.5 cm from the bottom of the bottle using a standard sewing needle. Each filter run consisted of 10 L of water at approximately 200 NTU. Experimental results indicated that 95% removal of turbidity could be achieved. These roughing filters can be constructed from readily available and affordable materials in developing countries and produce an effluent water quality of less than 30 NTU when initial turbidities are greater than 200 NTU.
<br/><br/>
Finally, the third series of experiments focused on testing the newly developed roughing filter in series with SODIS to evaluate the system as a whole. The results confirmed that using the roughing filter, as a pretreatment to SODIS, is a highly effective means of improving the disinfection potential of the process. These roughing filters produce an effluent water quality of less than 30 NTU, which is required for SODIS, making them a viable pretreatment for turbid water intended for SODIS use.
|
3 |
Exploring Pretreatments for the Solar Water Disinfection (SODIS) ProcessHirtle, Lacey Elizabeth January 2008 (has links)
The use of sunlight for water disinfection has been practiced since ancient times. Only in the last three decades has solar disinfection become widely recognized as a viable means of providing safe drinking
water to the disadvantaged portion of the world’s population. The World Health Organization estimates that 1.6 million people die every year because of waterborne diseases.
<br/><br/>
The Swiss Federal Institute of Environmental Science and Technology and their Department of Water and Sanitation in Developing Countries have been instrumental in propagating the solar water disinfection (SODIS) process in developing countries. The reason for this technology being widely
used and accepted is its ease of use and effectiveness: water is placed in clear plastic bottles and exposed to direct sunlight for approximately six hours. The microorganisms in the water absorb the
sunlight and it, in turn at sufficient UV dosages, causes mutations to their genetic material, inhibiting reproduction. Although some pathogens may still be viable they are no longer infective. The result is
microbiologically safe water.
<br/><br/>
Research to date has explored everything from which colour and size the SODIS containers should be to whether adding catalysts to the water before exposure improves disinfection. Apart from a few studies that examined the effect of shaking the bottles (to entrain air) before exposure, there has been
limited research on pretreatments for enhancing solar disinfection.
<br/><br/>
The focus of this project was to explore two pretreatments for SODIS and determine how they affect the efficiency of the process. The first stage was to examine one of the currently used pretreatments:
cleaning the water containers before use. The second stage was to develop an accessible, low-cost filtration technique to remove particles from the water before exposure to sunlight. Particles in the water disperse the light and protect the microorganisms from being inactivated, so it is important to
have as few particles as possible; the recommended upper limit is 30 NTU for solar disinfection. In many instances, surface water with high turbidity (greater than 200 NTU) serves as the only source for drinking water in developing areas.
<br/><br/>
The first series of experiments in the current research evaluated if cleaning the bottles was necessary and if so, which cleaning agents would be most effective and available. The agents selected were 70%
isopropyl alcohol, a soap-water mixture, and lime juice. The experiments demonstrated that cleaning with 70% isopropyl alcohol did not affect the process in any way. Cleaning with the soap-water mixture did have a slightly negative effect on the process; there was substantial microbial recovery when bottles were kept in the dark overnight. In the case of the lime juice, it actually inhibited the
disinfection process. It is necessary to remove any debris that might exist within the containers before using them, but using a chemical cleaning agent or mechanically scrubbing can decrease the amount of
disinfection that occurs during SODIS. Thus, it is suggested that using a chemical pretreatment is not necessary and has the potential to inhibit disinfection, especially without proper training or technical
knowledge.
<br/><br/>
The second series of experiments identified the optimal design for a low-cost roughing filter that could be used to remove particles from water before exposure to sunlight. The roughing filter that was built from the same plastic pop bottles used for solar disinfection, as well as gravel and sand. It was constructed with three centimetres of gravel on the bottom of the pop bottle and then 17 cm of coarse sand was added on top to make the total filter height 20 cm. A 0.6 mm hole was made at approximately 1.5 cm from the bottom of the bottle using a standard sewing needle. Each filter run consisted of 10 L of water at approximately 200 NTU. Experimental results indicated that 95% removal of turbidity could be achieved. These roughing filters can be constructed from readily available and affordable materials in developing countries and produce an effluent water quality of less than 30 NTU when initial turbidities are greater than 200 NTU.
<br/><br/>
Finally, the third series of experiments focused on testing the newly developed roughing filter in series with SODIS to evaluate the system as a whole. The results confirmed that using the roughing filter, as a pretreatment to SODIS, is a highly effective means of improving the disinfection potential of the process. These roughing filters produce an effluent water quality of less than 30 NTU, which is required for SODIS, making them a viable pretreatment for turbid water intended for SODIS use.
|
Page generated in 0.1387 seconds