• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 26
  • 26
  • 26
  • 26
  • 18
  • 17
  • 12
  • 12
  • 10
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An Investigation of the Hydration of Steam-cured Ternary and Quaternary Cement Blends

Clarridge, Elena 06 December 2011 (has links)
The influence of supplementary materials such as slag, metakaolin and limestone in steam-cured ternary and quaternary cement blends on physical and chemical hydration mechanisms was studied by analyzing the evolution of non-evaporable water content, hydration products and compressive strength. The role of limestone in hydration reactions of cement was also investigated. These properties were studied through the use of differential thermal and thermogravimetric analyses, as well as the loss-on-ignition, X-ray diffraction and compressive strength tests at 1, 3, 7, and 28 days. Research findings revealed that it is possible to replace up to 40% cement with other materials and still achieve compressive strengths similar to mixtures with a 25% cement replacement at 0.34 w/b ratio. Additionally, ternary limestone mixtures exhibited superior mechanical properties to ternary metakaolin mixtures. Lastly, limestone powder was determined to behave as inert filler, accelerating hydration at early ages through heterogeneous nucleation.
2

An Investigation of the Hydration of Steam-cured Ternary and Quaternary Cement Blends

Clarridge, Elena 06 December 2011 (has links)
The influence of supplementary materials such as slag, metakaolin and limestone in steam-cured ternary and quaternary cement blends on physical and chemical hydration mechanisms was studied by analyzing the evolution of non-evaporable water content, hydration products and compressive strength. The role of limestone in hydration reactions of cement was also investigated. These properties were studied through the use of differential thermal and thermogravimetric analyses, as well as the loss-on-ignition, X-ray diffraction and compressive strength tests at 1, 3, 7, and 28 days. Research findings revealed that it is possible to replace up to 40% cement with other materials and still achieve compressive strengths similar to mixtures with a 25% cement replacement at 0.34 w/b ratio. Additionally, ternary limestone mixtures exhibited superior mechanical properties to ternary metakaolin mixtures. Lastly, limestone powder was determined to behave as inert filler, accelerating hydration at early ages through heterogeneous nucleation.
3

Flow and Compressive Strength of Alkali-Activated Mortars.

Yang, Keun-Hyeok, Song, J-K., Lee, K-S., Ashour, Ashraf 01 January 2009 (has links)
yes / Test results of thirty six ground granulated blast-furnace slag (GGBS)-based mortars and eighteen fly ash (FA)-based mortars activated by sodium silicate and/or sodium hydroxide powders are presented. The main variables investigated were the mixing ratio of sodium oxide (Na2O) of the activators to source materials, water-to-binder ratio, and fine aggregate-to-binder ratio. Test results showed that GGBS based alkali-activated (AA) mortars exhibited much higher compressive strength but slightly less flow than FA based AA mortars for the same mixing condition. Feed-forward neural networks and simplified equations developed from nonlinear multiple regression analysis were proposed to evaluate the initial flow and 28-day compressive strength of AA mortars. The training and testing of neural networks, and calibration of the simplified equations were achieved using a comprehensive database of 82 test results of mortars activated by sodium silicate and sodium hydroxide powders. Compressive strength development of GGBS-based alkali-activated mortars was also estimated using the formula specified in ACI 209 calibrated against the collected database. Predictions obtained from the trained neural network or developed simplified equations were in good agreement with test results, though early strength of GGBS-based alkali-activated mortars was slightly overestimated by the proposed simplified equations.
4

Stabilization Of Expansive Clays Using Granulated Blast Furnace Slag (gbfs), Gbfs-lime Combinations And Gbfs Cement

Yazici, Veysel 01 April 2004 (has links) (PDF)
Expansive clays undergo a large swell when they are subjected to water. Thus, expansive clay is one of the most abundant problems faced in geotechnical engineering applications. It causes heavy damages in structures, especially in water conveyance canals, lined reservoirs, highways, airport runways etc., unless appropriate measures are taken. In this thesis, Granulated Blast Furnace Slag (GBFS), GBFS - Lime combinations and GBFS Cement (GBFSC) were utilized to overcome or to limit the expansion of an artificially prepared expansive soil sample (Sample A). GBFS and GBFSC were added to Sample A in proportions of 5 to 25 percent. Different GBFS-Lime combinations were added to Sample A by keeping the total addition at 15 percent. Effect of stabilizers on grain size distribution, Atterberg limits, swelling percentage and rate of swell of soil samples were determined. Effect of curing on swelling percentage and rate of swell of soil samples were also determined. Leachate analysis of GBFS, GBFSC and samples stabilized by 25 percent GBFS and GBFSC was performed. Use of stabilizers successfully decreased the amount of swell while increasing the rate of swell. Curing samples for 7 and 28 days resulted in less swell percentages and higher rate of swell.
5

Class-F Fly Ash and Ground Granulated Blast Furnace Slag (GGBS) Mixtures for Enhanced Geotechnical and Geoenvironmental Applications

Sharma, Anil Kumar January 2014 (has links) (PDF)
Fly ash and blast furnace slag are the two major industrial solid by-products generated in most countries including India. Although their utilization rate has increased in the recent years, still huge quantities of these material remain unused and are stored or disposed of consuming large land area involving huge costs apart from causing environmental problems. Environmentally safe disposal of Fly ash is much more troublesome because of its ever increasing quantity and its nature compared to blast furnace slag. Bulk utilization of these materials which is essentially possible in civil engineering in general and more particular in geotechnical engineering can provide a relief to environmental problems apart from having economic benefit. One of the important aspects of these waste materials is that they improve physical and mechanical properties with time and can be enhanced to a significant level by activating with chemical additives like lime and cement. Class-C Fly ashes which have sufficient lime are well utilized but class-F Fly ashes account for a considerable portion that is disposed of due to their low chemical reactivity. Blast furnace slag in granulated form is used as a replacement for sand to conserve the fast declining natural source. The granulated blast furnace slag (GBS) is further ground to enhance its pozzolanic nature. If GBS is activated by chemical means rather than grinding, it can provide a good economical option and enhance its utilization potential as well. GGBS is latent hydraulic cement and is mostly utilized in cement and concrete industries. Most uses of these materials are due to their pozzolanic reactivity. Though Fly ash and GGBS are pozzolanic materials, there is a considerable difference in their chemical composition. For optimal pozzolanic reactivity, sufficient lime and silica should be available in desired proportions. Generally, Fly ash has higher silica (SiO2) content whereas GGBS is rich in lime (CaO) content. Combining these two industrial wastes in the right proportion may be more beneficial compared to using them individually. The main objective of the thesis has been to evaluate the suitability of the class-F Fly ash/GGBS mixtures with as high Fly ash contents for Geotechnical and Geo-environmental applications. For this purpose, sufficient amount of class-F Fly ash and GGBS were collected and their mixtures were tested in the laboratory for analyzing their mechanical behavior. The experimental program included the evaluation of mechanical properties such as compaction, strength, compressibility of the Fly ash/GGBS mixtures at different proportions with GGBS content varying from 10 to 40 percent. An external agent such as chemical additives like lime or cement is required to accelerate the hydration and pozzolanic reactions in both these materials. Hence, addition of varying percentages of lime is also considered. However, these studies are not extended to chemically activate GBS and only GGBS is used in the present study. Unconfined compressive strength tests have been carried out on various Fly ash/ GGBS mixtures at different proportions at different curing periods. The test results demonstrated rise in strength with increase in GGBS content and with 30 and 40 percent of GGBS addition, the mixture showed higher strength than either of the components i.e. Fly ash or GGBS after sufficient curing periods. Addition of small amount of lime increased the strength tremendously which indicated the occurrence of stronger cementitious reactions in the Fly ash/GGBS mixtures than in samples containing only Fly ash. Improvement of the strength of the Fly ash/GGBS mixtures was explained through micro-structural and mineralogical studies. The microstructure and mineralogical studies of the original and the stabilized samples were investigated by scanning electron microscopy (SEM) and X-Ray diffraction techniques respectively. These studies together showed the formation of cementitious compounds such as C-S-H, responsible for imparting strength to the pozzolanic materials, is better in the mixture containing 30 and 40 percent of GGBS content than in individual components. Resilient and permanent deformation behavior on an optimized mix sample of Fly ash and GGBS cured for 7 day curing period has been studied. The Resilient Modulus (Mr) is a measure of subgrade material stiffness and is actually an estimate of its modulus of elasticity (E). The permanent deformation behavior is also important in predicting the performance of the pavements particularly in thin pavements encountered mainly in rural and low volume roads. The higher resilient modulus values indicated its suitability for use as subgrade or sub-base materials in pavement construction. Permanent axial strain was found to increase with the number of load cycles and accumulation of plastic strain in the sample reduced with the increase in confining pressure. Consolidation tests were carried on Fly ash/GGBS mixtures using conventional oedometer to assess their volume stability. However, such materials develop increased strength with time and conventional rate of 24 hour as duration of load increment which requires considerable time to complete the test is not suitable to assess their volume change behavior in initial stages. An attempt was thus made to reduce the duration of load increment so as to reflect the true compressibility characteristics of the material as close as possible. By comparing the compressibility behavior of Fly ash and GGBS between conventional 24 hour and 30 minutes duration of load increment, it was found that 30 minutes was sufficient to assess the compressibility characteristics due to the higher rate of consolidation. The results indicated the compressibility of the Fly ash/GGBS mixtures slightly decreases initially but increase with increase in GGBS content. Addition of lime did not have any significant effect on the compressibility characteristics since the pozzolanic reaction, which is a time dependent process and as such could not influence due to very low duration of loading. Results were also represented in terms of constrained modulus which is a most commonly used parameter for the determination of settlement under one dimensional compression tests. It was found that tangent constrained modulus showed higher values only at higher amounts of GGBS. It was also concluded that settlement analysis can also be done by taking into account the constrained modulus. The low values of compression and recompression indices suggested that settlements on the embankments and fills (and the structures built upon these) will be immediate and minimal when these mixtures are used. In addition to geotechnical applications of Fly ash/GGBS mixture, their use for the removal of heavy metals for contaminated soils was also explored. Batch equilibrium tests at different pH and time intervals were conducted with Fly ash and Fly ash/GGBS mixture at a proportion of 70:30 by weight as adsorbents to adsorb lead ions. It was found that though uptake of lead by Fly ash itself was high, it increased further in the presence of GGBS. Also, the removal of lead ions increased with increase in pH of the solution but decreases at very high pH. The retention of lead ions by sorbents at higher pH was due to its precipitation as hydroxide. Results of the adsorption kinetics showed that the reaction involving removal of lead by both the adsorbents follow second-order kinetics. One of the major problems which geotechnical engineers often face is construction of foundations on expansive soils. Though stabilization of expansive soils with lime or cement is well established, the use of by-product materials such as Fly ash and blast furnace slag to achieve economy and reduce the disposal problem needs to be explored. To stabilize the soil, binder comprising of Fly ash and GGBS in the ratio of 70:30 was used. Different percentages of binder with respect to the soil were incorporated to the expansive soil and changes in the physical and engineering properties of the soil were examined. Small addition of lime was also considered to enhance the pozzolanic reactions by increasing the pH. It was found that liquid limit, plasticity index, swell potential and swell pressure of the expansive soil decreased considerably while the strength increased with the addition of binder. The effect was more pronounced with the addition of lime. Swell potential and swell pressure reduced significantly in the presence of lime. Based on the results, it can be concluded that the expansive soils can be successfully stabilized with the Fly ash-GGBS based binder with small addition of lime. This is also more advantageous in terms of lime requirement which is typically high when Fly ash, class-F in particular, is used alone to stabilize expansive soils. Based on the studies carried out in the present work, it is established that combination of Fly ash and GGBS can be advantageous as compared to using them separately for various geotechnical applications such as for construction of embankments/fills, stabilization of expansive soils etc. with very small amount of lime. Further, these mixtures have better potential for geo-environmental applications such as decontamination of soil. However, it is still a challenge to activate GBS without grinding.
6

Investigation Of The Properties Of Portland Slag Cement Produced By Separate Grinding And Intergrinding Methods

Geven, Caglar 01 June 2009 (has links) (PDF)
In recent years, there has been a growing trend for the use of industrial by-products in the production of blended cements because of economical, environmental, ecological and diversified product quality reasons. Granulated blast furnace slag, a by-product of the transformation of iron ore into pig-iron in a blast furnace, is one of these materials which is used as a cementitious ingredient. The aim of this study is to investigate the properties of Portland slag cement (CEMII/B-S) by using separate grinding and intergrinding of granulated blast furnace slag and Portland cement clinker. For this purpose, granulated blast furnace slag was used as mineral admixture replacing 30% of the clinker. Clinker and granulated blast furnace slag were ground to four different Blaine fineness values of 3000 cm2/g, 3500 cm2/g, 4000 cm2/g and 4500 cm2/g by intergrinding and separate grinding in a laboratory ball mill. Then, eight Portland slag cement mixes and four Portland cement control mixes were prepared, in order to determine and compare 2-, 7-, 28-, and 90-day compressive and flexural strengths, normal consistencies and setting times. It was found that for the Blaine fineness values of 3000 cm2/g, 3500 cm2/g and 4000cm2/g, the 2-, 7-, 28-, and 90-day compressive strength of the interground Portland slag cements had higher values than the separately ground Portland slag cements. However, for the Blaine fineness values of 4500 cm2/g, separately ground Portland slag cement specimens had slightly higher 2-, 7-, 28-, and 90-day compressive strength values than the interground ones.
7

Způsoby využití by-passových cementářských odprašků v technologii stavebních hmot / Methods of using cement kiln by-pass dust in building materials technology

Sikorová, Věra January 2019 (has links)
This diploma thesis is focused on methods of using cement kiln by-pass dust in building materials technology. By-pass dust was treated to remove chlorides and could then be used as other constituent to various types of cements in the amount of 0–5 wt. % according to ČSN EN 197-1. The properties of dusts before and after chloride removal were examined and after incorporating modified by-pass dust into the cement, the properties of fresh and hardened cement pastes and mortars were studied. It was found that modified by-pass dust after incorporation into cement fulfill requirements of ČSN EN 197-1.
8

Properties of cementless mortars activated by sodium silicate.

Yang, Keun-Hyeok, Song, J-K., Ashour, Ashraf, Lee, E-T. 09 1900 (has links)
yes / The present paper reports the testing of 12 alkali-activated mortars and a control ordinary portland cement (OPC) mortar. The main aim is to develop cementless binder activated by sodium silicate powder. An alkali quality coefficient combining the amounts of main compositions of source materials and sodium oxide (Na2O) in sodium silicate is proposed to assess the properties of alkali activated mortars, based on the hydration mechanism of alkali-activated pastes. Fly ash (FA) and ground granulated blast-furnace slag (GGBS) were employed as source materials. The ratio of Na2O-to-source material by weight for different mortars ranged between 0.038 and 0.164; as a result, alkali quality coefficient was varied from 0.0025 to 0.0365. Flow loss of fresh mortar, and shrinkage strain, compressive strength and modulus of rupture of hardened mortars were measured. The compressive strength development of alkali activated mortar was also compared with the design equations for OPC concrete specified in ACI 209 and EC 2. Test results clearly showed that the flow loss and compressive strength development of alkali-activated mortar were significantly dependent on the proposed alkali quality coefficient. In particular, a higher rate of compressive strength development achieved at early age for GGBS-based alkali-activated mortar and at long-term age for FA-based alkali-activated mortar. In addition, shrinkage strain and modulus of rupture of alkali-activated mortar were comparable to those of OPC mortar.
9

Investigação de parâmetros do CCR com incorporação de escória granulada de alto forno para utilização como base de pavimentos. / Analysis of mechanical behavior of the RCC with incorporation of granulated blast furnace slag for use as pavement base.

Pinto, Paulo César 19 February 2010 (has links)
A crescente preocupação ambiental e a atual crise energética fazem com que indústrias, de um modo geral, intensifiquem esforços para maximização de processos de produção e reutilização de subprodutos gerados. Na siderurgia a produção do aço é realizada por meio da extração do minério de ferro adicionando-se fundentes, gerando como subproduto uma ganga em forma de escória de alto forno. Na presente pesquisa foram compostas misturas de concreto compactado com rolo CCR visando o emprego como base de pavimentos, utilizando três diferentes materiais de granulometria miúda: areia natural, areia industrial e escória granulada de alto forno (com dimensão máxima de 4,8 mm) nas quantidades de 50 % e 100 %; para fins de análise da influência destas diferentes areias foram confeccionados corpos de prova cilíndricos e prismáticos moldados na umidade ótima e no ramo seco da curva de compactação. Foram investigados parâmetros referentes à umidade de compactação, massa específica, resistências à tração indireta e à tração na flexão, módulos de elasticidade por pulso ultrassônico, além de módulos de elasticidade estáticos obtidos a partir de curvas tensão-deformação e por analogia de Möhr (medida de flecha em vigotas em flexão). Visando avaliar a aplicabilidade dos CCR estudados, em especial aquele com escória, foi utilizado o programa computacional MnLayer (para análise de tensões em pavimentos asfálticos) empregando camada de base rígida em CCR para estruturas de pavimentos sujeitos à ação de cargas do tráfego de veículos rodoviários, portuários e aeroportuários, observando a influência dos três tipos de agregados miúdos no nível de tensões da camada cimentada, o que depende em grande parte do módulo de elasticidade da camada de base. Observou-se queda nas resistências dos CCR quando da incorporação de 50 % ou 100 % de escória granulada; por outro lado, essas misturas apresentaram ganhos de resistência em idades mais avançadas em comparação a misturas que empregaram areias natural ou industrial. O módulo de elasticidade dos CCR, com a presença da escória, parcial ou total como fração areia, em geral decresceu à exceção de seu emprego em conjunto com areia natural. As misturas com escória granulada, do ponto de vista de análise mecanicista, resultaram em exigências de maiores espessuras do material, o que não pode fazer tal mistura economicamente viável em qualquer situação, para os casos de misturas com 100 % de escória granulada de alto forno e com fração mista de areia natural e escória. / The increasing environmental concerns as well as energy sources shortage leads industry to consider both optimization of production processes and sustainable use and disposal of its by-pass products. In siderurgical steel manufactures the most common by-pass product is the blast furnace slag with emphasis to its granulated shape. This study considered the evaluation of rolled compacted concretes (RCC) mixtures containing natural or industrial sands as well as such slags at 50% and 100% (with maximum diameter of 4.8 mm) as candidates for pavement base layers. The analysis considered laboratory compaction tests in order to verify the influence of such sands on concrete physical parameters as bulk density and optimum moisture content. Evaluation of mechanical parameters as indirect tensile strength, flexural strength, ultrasonic modulus of elasticity and static modulus of elasticity were carried out as part of the study. Through mechanistic analysis using the elastic layered theory-based computational program MnLayer it was possible to verify implications of each RCC mixture design on pavement thickness and tensile stresses in cemented base layers, in consideration of highway, harbor and airport vehicles. Loss of resistance was verified for RCC mixtures at 50% and 100% slag sand; on the other hand such mixtures have improved its strengths at advanced ages (180 days) compared to the other sands. The modulus of elasticity also decreased for mixtures containing slag sands with exception to the blend of natural and slag sand. Under the mechanistic stand point slag sand mixtures requires thicker base layers in pavements that could lead, depending on several factors, to less cost-effective results in the case of 100% slag sands mixtures and blend (50%-50%) natural and slag sands mixtures.
10

Utilization Of Ggbfs Blended Cement Pastes In Well Cementing

Alp, Baris 01 September 2012 (has links) (PDF)
In well cementing, the cement slurry is exposed to the conditions far different than those of ordinary Portland cement (PC) used in construction. After placement, hardened cement paste should preserve integrity and provide zonal isolation through the life of the well. American Petroleum Institute (API) Class G cement is the most common cement type used in various well conditions. Class G cement has a high degree of sulfate resistance which makes it more stable than PC when subjected to the compulsive well conditions. Ground granulated blast furnace slag (GGBFS) blended cement has a long history of use in the construction industry, but is not extensively used in well cementing applications. This study presents an experimental program to investigate the applicability of CEM I and GGBFS blended cement pastes in the well cementing industry. Class G cement and blends of CEM I and GGBFS with the proportions (80:20), (60:40), (40:60) and (20:80) are prepared with same water/cement ratio (0.44) as restricted for Class G cement in API Specification 10A to be tested. The cement pastes are cured for ages of 1 day, 7 days and 28 days at 80

Page generated in 0.1012 seconds