• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular Optimization Using Graph-to-Graph Translation

Sandström, Emil January 2020 (has links)
Drug development is a protracted and expensive process. One of the main challenges indrug discovery is to find molecules with desirable properties. Molecular optimization is thetask of optimizing precursor molecules by affording them with desirable properties. Recentadvancement in Artificial Intelligence, has led to deep learning models designed for molecularoptimization. These models, that generates new molecules with desirable properties, have thepotential to accelerate the drug discovery. In this thesis, I evaluate the current state-of-the-art graph-to-graph translation model formolecular optimization, the HierG2G. I examine the HierG2G’s performance using three testcases, where the second test is designed, with the help of chemical experts, to represent a commonmolecular optimization task. The third test case, tests the HierG2G’s performance on,for the model, previously unseen molecules. I conclude that, in each of the test cases, the HierG2Gcan successfully generate structurally similar molecules with desirable properties givena source molecule and an user-specified desired property change. Further, I benchmark the HierG2Gagainst two famous string-based models, the seq2seq and the Transformer. My resultsuggests that the seq2seq is the overall best model for molecular optimization, but due to thevarying performance among the models, I encourage a potential user to simultaneously use allthree models for molecular optimization.
2

Signal Processing on Graphs - Contributions to an Emerging Field / Traitement du signal sur graphes - Contributions à un domaine émergent

Girault, Benjamin 01 December 2015 (has links)
Ce manuscrit introduit dans une première partie le domaine du traitement du signal sur graphe en commençant par poser les bases d'algèbre linéaire et de théorie spectrale des graphes. Nous définissons ensuite le traitement du signal sur graphe et donnons des intuitions sur ses forces et faiblesses actuelles comparativement au traitement du signal classique. En seconde partie, nous introduisons nos contributions au domaine. Le chapitre 4 cible plus particulièrement l'étude de la structure d'un graphe par l'analyse des signaux temporels via une transformation graphe vers série temporelle. Ce faisant, nous exploitons une approche unifiée d'apprentissage semi-supervisé sur graphe dédiée à la classification pour obtenir une série temporelle lisse. Enfin, nous montrons que cette approche s'apparente à du lissage de signaux sur graphe. Le chapitre 5 de cette partie introduit un nouvel opérateur de translation sur graphe définit par analogie avec l'opérateur classique de translation en temps et vérifiant la propriété clé d'isométrie. Cet opérateur est comparé aux deux opérateurs de la littérature et son action est décrite empiriquement sur quelques graphes clés. Le chapitre 6 décrit l'utilisation de l'opérateur ci-dessus pour définir la notion de signal stationnaire sur graphe. Après avoir étudié la caractérisation spectrale de tels signaux, nous donnons plusieurs outils essentiels pour étudier et tester cette propriété sur des signaux réels. Le dernier chapitre s'attache à décrire la boite à outils \matlab développée et utilisée tout au long de cette thèse. / This dissertation introduces in its first part the field of signal processing on graphs. We start by reminding the required elements from linear algebra and spectral graph theory. Then, we define signal processing on graphs and give intuitions on its strengths and weaknesses compared to classical signal processing. In the second part, we introduce our contributions to the field. Chapter 4 aims at the study of structural properties of graphs using classical signal processing through a transformation from graphs to time series. Doing so, we take advantage of a unified method of semi-supervised learning on graphs dedicated to classification to obtain a smooth time series. Finally, we show that we can recognize in our method a smoothing operator on graph signals. Chapter 5 introduces a new translation operator on graphs defined by analogy to the classical time shift operator and verifying the key property of isometry. Our operator is compared to the two operators of the literature and its action is empirically described on several graphs. Chapter 6 describes the use of the operator above to define stationary graph signals. After giving a spectral characterization of these graph signals, we give a method to study and test stationarity on real graph signals. The closing chapter shows the strength of the matlab toolbox developed and used during the course of this PhD.

Page generated in 0.1346 seconds