• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rigidity of frameworks

Guler, Hakan January 2018 (has links)
A d-dimensional (bar-and-joint) framework is a pair (G; p) where G = (V;E) is a graph and p : V > Rd is a function which is called the realisation of the framework (G; p). A motion of a framework (G; p) is a continuous function P : [0; 1] x V > Rd which preserves the edge lengths for all t 2 [0; 1]. A motion is rigid if it also preserves the distances between non-adjacent pairs of vertices of G. A framework is rigid if all of its motions are rigid motions. An in nitesimal motion of a d-dimensional framework (G; p) is a function q : V > Rd such that [p(u) - p(v)] ~ [q(u) - q(v)] = 0 for all uv 2 E. An in nitesimal motion of the framework (G; p) is rigid if we have [p(u) - p(v)] . [q(u) - q(v)] = 0 also for non-adjacent pairs of vertices. A framework (G; p) is in nitesimally rigid if all of its in nitesimal motions are rigid in nitesimal motions. A d-dimensional framework (G; p) is generic if the coordinates of the positions of vertices assigned by p are algebraically independent. For generic frameworks rigidity and in nitesimal rigidity are equivalent. We construct a matrix of size |E| xd|V| for a given d-dimensional framework (G; p) as follows. The rows are indexed by the edges of G and the set of d consecutive columns corresponds to a vertex of G. The entries of a row indexed by uv 2 E contain the d coordinates of p(u) - p(v) and p(v) - p(u) in the d consecutive columns corresponding to u and v, respectively, and the remaining entries are all zeros. This matrix is the rigidity matrix of the framework (G; p) and denoted by R(G; p). Translations and rotations of a given framework (G; p) give rise to a subspace of dimension d+1 2 of the null space of R(G; p) when p(v) affinely spans Rd. Therefore we have rankR(G; p) djV j�� d+1 2 if p(v) affinely spans Rd, and the framework is in infinitesimally rigid if equality holds. We construct a matroid corresponding to the framework (G; p) from the rigidity matrix R(G; p) in which F E is independent if and only if the rows of R(G; p) indexed by F are linearly independent. This matroid is called the rigidity matroid of the framework (G; p). It is clear that any two generic realisations of G give rise to the same rigidity matroid. In this thesis we will investigate rigidity properties of some families of frameworks. We rst investigate rigidity of linearly constrained frameworks i.e., 3- dimensional bar-and-joint frameworks for which each vertex has an assigned plane to move on. Next we characterise rigidity of 2-dimensional bar-and-joint frameworks (G; p) for which three distinct vertices u; v;w 2 V (G) are mapped to the same point, that is p(u) = p(v) = p(w), and this is the only algebraic dependency of p. Then we characterise rigidity of a family of non-generic body-bar frameworks in 3-dimensions. Finally, we give an upper bound on the rank function of a d-dimensional bar-and-joint framework for 1 < d < 11.

Page generated in 0.0606 seconds