• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Altura de pastejo da Brachiaria ruziziensis sobre a produção de palhada, atributos físicos, carbono e nitrogênio no solo e produtividade de soja em sistema de integração lavoura pecuária conduzido em latossolo arenoso / Height of grazing of Brachiaria ruziziensis on straw production, physical attributes, carbon and nitrogen in soil and soybean yield in crop livestock integration system conducted in Sandy latosol

Ferreira, Gilberto Alves 22 August 2013 (has links)
Made available in DSpace on 2017-07-10T17:40:44Z (GMT). No. of bitstreams: 1 Gilberto_Alves_Fereira.pdf: 2149647 bytes, checksum: cf5d015f2b3d6a66b8343e8244e8da51 (MD5) Previous issue date: 2013-08-22 / The use of forage species in production systems such as integrated crop livestock can be key to improving fertility and increasing productivity of pastures and crops. The objective this study was to evaluate the effects height of grazing of Brachiaria ruziziensis on straw production, on the physical properties of the soil, in levels and stocks of carbon and nitrogen of the soil and in the soybean yield in crop livestock integration system. The experiment was conducted in the Experimental Farm of the Agronomic Institute of Paraná (IAPAR), located in the municipality of Xambrê-PR, in september 2010 to april 2012, during the agricultural year 2010/2011 and 2011/2012. The experimental design used was randomized in blocks, split plot in time (sampling time), with five treatments (grazing height of 10, 20, 30 and 40 cm and an area with no grazing) and three repetitions. Were determined the dry matter the mass of the aerial part of Brachiaria ruziziensis, vegetable residue dry matter and mass of total dry matter. The layers of 0-10, 10-20 and 20-30 cm were studied the density, macroporosity, microporosity, total porosity, gravimetric water, levels and stocks of total organic carbon, particulate carbon and carbon associated with minerals and the levels and stocks of mineral nitrogen and total of the soil. In culture of soy were evaluated the number of plants per meter, height of plants and grain productivity. The dry matter mass of the aerial part of Brachiaria ruziziensis and the total dry matter mass were significant (P<0,05) in the two seasons of evaluation, with higher production in the ungrazed compared to grazed area (P<0,05). The variable dry matter of plant residue was not significant (P>0,05) for the first time and significant in second season (P<0,05). The density, macroporosity, microporosity, total porosity and gravimetric soil moisture were not altered by grazing height and area not grazed at all depths evaluated (P>0,05). Density reduction occurred, increase macroporosity and total porosity in the 0-10 cm layer of soil, at the end of the experiment (P<0,05). There was a higher microporosity after brachiaria in relation to the time after the soybean crop (P <0,05). The levels and stocks of total organic carbon of the soil and its fractions, besides levels and stocks of mineral and total nitrogen of the soil were not altered by grazing heights and the area not grazed (P>0,05). However, there was an increase in levels and stocks of total organic carbon and carbon associated with minerals and a reduction of the particulate carbon of the soil in the final experiment (P<0,05). There was an increase of mineral nitrogen after harvest soybeans for all soil layers (P<0,05), however, the increase of total nitrogen and stocks of the soil occurred only in the 0-10 cm depth, in the last evaluation. The number of plants per meter, plant height and yield of soybean were not affected by the different Heights and the absence of grazing (P>0,05) / O emprego de espécies forrageiras em sistemas de produção como a integração lavoura pecuária pode ser determinante para a melhoria da fertilidade e incremento de produtividade das pastagens e das culturas. O objetivo deste trabalho foi avaliar os efeitos da altura de pastejo de Brachiaria ruziziensis na produção de palhada, nas propriedades físicas do solo, nos teores e estoques de carbono e nitrogênio do solo e na produtividade da soja em sistema de integração lavoura pecuária. O experimento foi conduzido em área da Fazenda Experimental do Instituto Agronômico do Paraná (IAPAR), localizada no município de Xambrê-PR, no período de setembro de 2010 a abril de 2012, durante os anos agrícolas de 2010/2011 e 2011/2012. O delineamento experimental utilizado foi em blocos ao acaso, em parcelas subdivididas no tempo (época de amostragem), com cinco tratamentos (altura de pastejo de 10, 20, 30 e 40 cm e uma área sem pastejo) e três repetições. Foram determinadas a massa de matéria seca da parte aérea de Brachiaria ruziziensis, matéria seca de resíduo vegetal e massa de matéria seca total. Nas camadas de 0-10, 10-20 e 20-30 cm foram estudadas a densidade, macroporosidade, microporosidade, porosidade total, água gravimétrica, teores e estoques de carbono orgânico total, carbono particulado e carbono associados aos minerais do solo e os teores e estoque de nitrogênio mineral e total do solo. Na cultura da soja foram avaliadas o número de plantas por metro, altura das plantas e produtividade de grãos. A massa de matéria seca da parte aérea de Brachiaria ruziziensis e a massa de matéria seca total foram significativas (P<0,05) nas duas épocas de avaliação, com maior produção na área sem pastejo em relação às áreas pastejadas (P<0,05). Já a variável matéria seca de resíduo vegetal não foi significativa (P>0,05) para a primeira época e significativo na segunda época (P<0,05). A densidade, macroporosidade, microporosidade, porosidade total e umidade gravimétrica do solo não foram alteradas pelas alturas de pastejo e área não pastejada em todas as profundidades avaliadas (P>0,05). Ocorreu redução da densidade, aumento da macroporosidade e da porosidade total na camada 0-10 cm do solo, ao final do experimento (P<0,05). Houve maior microporosidade após a braquiária em relação à época após a cultura da soja (P<0,05). Os teores e estoques de carbono orgânico total do solo e suas respectivas frações, além dos teores e estoques de nitrogênio mineral e total do solo não foram alteradas pelas alturas de pastejo e a área não pastejada (P>0,05). Todavia, ocorreu aumento dos teores e estoques de carbono orgânico total e carbono associado aos minerais e redução do carbono particulado do solo ao final do experimento (P<0,05). Houve aumento do nitrogênio mineral após a colheita da soja para todas as camadas do solo (P<0,05), porém, o aumento do nitrogênio total do solo e seus estoques ocorreram apenas na profundidade 0-10 cm, na última avaliação. O número de plantas por metro, a altura das plantas e a produtividade da cultura da soja não foram influenciados pelas diferentes alturas e pela ausência do pastejo (P>0,05)
2

Estimativa do teor de água no solo em bacia hidrográfica com redes neurais artificiais utilizando fatores físicos e climáticos / Estimation of soil water content in watershed with artificial neural networks using physical factors and weather

Oliveira, Marquis Henrique Campos de January 2014 (has links)
O teor de água no solo é um dos fatores determinantes nos processos de transferência entre o solo e a atmosfera, contribuindo nos balanços de água e de energia. Esse teor é influenciado pelas entradas de água na bacia hidrográfica, por características climáticas, topográficas, de cobertura vegetal, práticas de manejo agrícola e propriedades do solo. A grande heterogeneidade desses fatores faz com que a caracterização desse teor seja ainda um grande desafio. Essa pesquisa objetivou desenvolver abordagens baseadas em Redes Neurais Artificiais (RNAs) para determinação da variação espacial e temporal do teor de água no solo, utilizando informações climáticas, propriedade físicas do solo e variáveis topográficas de uma bacia hidrográfica, com área aproximada de 78 km², localizada na Região Sul do Brasil (bacia do Taboão). A RNA adotada é uma rede de duas camadas, com 25 neurônios na camada intermediária, sendo o treinamento realizado por meio do algoritmo retropropagativo, considerando16 iterações iniciais dos pesos sinápticos, e número máximo de ciclos igual a 30.000. No total foram testadas 40 variáveis de entrada, sendo quatro referentes à topografia (altitude, declividade, distância do ponto ao trecho do rio mais próximo e desnível do ponto ao trecho mais próximo do rio); oito relacionadas ao solo (tipo de solo, densidade do solo, resistência à penetração no solo para as camadas de 0 a 20 cm e 20 a 40 cm, tensão da água no solo em apenas um ponto na bacia e percentual de argila, silte e areia), 10 relativas ao clima (clima, evapotranspiração de referência, temperatura do ar máxima e temperatura do ar, umidade relativa do ar máxima e umidade relativa do ar mínima, pressão atmosférica, radiação solar global, velocidade do vento e temperatura na relva), e 18 variáveis de chuva (chuva de 1, 2, 3, 4, 5, 6 e 12h; chuva de 1, 2, 3, 5, 10, 15, 20, 25 e 30 dias; chuva média ponderada horária; chuva média ponderada diária). A saída dos modelos foi comparada com valores de umidade gravimétrica determinados por amostras coletadas em 26 pontos da bacia, distribuídos espacialmente na bacia, no período compreendido entre 15/01 e 10/08/2013. Neste período o teor de água no solo (umidade gravimétrica) variou entre 13,73 e 33,75%. Os resultados demonstram que é possível estimar o teor de água no solo, com distribuição espacial e temporal, com boa eficiência (NSverificação = 0,77), empregando dados topográficos da bacia, propriedades físicas do solo e dados de chuva. As informações climáticas, por outro lado, não afetam significativamente essa estimativa (NSv=0,28), podendo até diminuir a eficiência do modelo (NSv=0,77 para NSv=0,68). O emprego de muitas variáveis não gera necessariamente o melhor desempenho do modelo, pois uma variável pode mascarar a outra e, até mesmo, interferir a eficiência do modelo (NSv=0,70 e NS=0,61 para os modelos onde foram utilizadas 38 variáveis de entrada), além de aumentar o custo e o tempo para aquisição dessas variáveis, e a dificuldade de interpretação dos resultados em relação às várias entradas. Alternativamente, pode-se estimar o teor de água no solo utilizando modelos mais simplificados que empregam dados de chuva monitorados e informações extraídas de mapas (topografia e tipo de solo), mas o desempenho desses modelos é menor (NSv 0,66). A análise de importância das variáveis de entrada delimitou a tensão da água no solo e a chuva como as variáveis mais influentes nos modelos de melhor desempenho, e a densidade do solo como a menos importante. Nos modelos mais simples, a variável menos relevante é a declividade e a mais importante é a chuva. A análise de sensibilidade demonstrou que nem sempre os modelos conseguem reproduzir o que deveria ocorrer no ambiente natural. / The water content in the soil is one of the determining factors in the transfer processes between the soil and the atmosphere, contributing to the balances of water and energy. This content is influenced by inputs to the basin, climate characteristics, topography, land cover characteristics, agricultural practices, and soil properties. These wide heterogeneity factors make the soil water content characterization still a challenge. This research aimed to develop an Artificial Neural Network (ANN) model to determine the spatial and temporal variation of the water content in the soil, using climate data, physical properties of soil, and topographic variables, of a basin with an area of approximately 78 km2, located in Brazil`s southern region (Taboão basin). The model adopted is a double layer feedforward neural network with 25 neurons in the hidden layer. The learning method is the back propagation algorithm, with 16 interactions to avoid local minima, and the maximum number of cycles chosen was 30,000. A total of 40 input variables were tested, including four of topography (altitude, slope, distance from the point to the nearest stretch of river and unevenness of the point closest to the stretch of the river), eight of soil related variables (soil type, soil density, soil penetration resistance for layers from 0 to 20 cm and from 20 to 40 cm, soil water tension at a single point in the basin and percentage of clay, silt and sand), 10 climate-related variables (climate, evapotranspiration reference, maximum and minimum air temperature, maximum and minimum air relative humidity, atmospheric pressure, global solar radiation, wind speed and temperature on grass) and 18 variables related to rain (accumulated precipitation in 1, 2, 3, 4, 5, 6 e 12h; accumulated precipitation in 2, 3, 5, 10, 15, 20, 25 and 30 days; weighted hourly accumulated precipitation; weighted daily accumulated precipitation). The outputs of the models were compared with values determined by gravimetric moisture samples collected from 26 points spatially distributed in the basin, in the period between 15/01 and 10/08/2013. During this period the soil water content (gravimetric water content) ranged from 13.73 to 33.75%. The results show that it is possible to estimate the water content of the soil, temporal and spatial distribution, with good efficiency (NSverication = 0.77), using topographic data from the basin, soil physical properties and precipitation data. The weather information, on the other hand, did not significantly affect the estimate (NSv = 0.28) and may even decrease the efficiency (NSv) of the model (from 0.77 to 0.68). The use of many variables not necessarily generates the best performance of the model as a variable may mask another and even disrupt the efficiency of the model (NSv = 0.70 and NSv = 0.61, where 38 input variables were used), besides increasing the cost and the time to acquire these variables, and the difficulty of interpreting the results in relation to the various inputs. Alternatively, one can estimate the water content in soil using more simplified models, employing monitored rainfall data and information extracted from maps (topography and soil type), but the performance of these models is smaller (NSv 0.66). The analysis of the importance of input variables delimited the soil water tension and the rain as the most influential variables in the best models, and the density of the soil as the least important. In the simplest models, the less relevant variable is the slope and the most important is the rain. The sensitivity analysis showed that the models cannot always play what should occur in the natural environment.
3

Estimativa do teor de água no solo em bacia hidrográfica com redes neurais artificiais utilizando fatores físicos e climáticos / Estimation of soil water content in watershed with artificial neural networks using physical factors and weather

Oliveira, Marquis Henrique Campos de January 2014 (has links)
O teor de água no solo é um dos fatores determinantes nos processos de transferência entre o solo e a atmosfera, contribuindo nos balanços de água e de energia. Esse teor é influenciado pelas entradas de água na bacia hidrográfica, por características climáticas, topográficas, de cobertura vegetal, práticas de manejo agrícola e propriedades do solo. A grande heterogeneidade desses fatores faz com que a caracterização desse teor seja ainda um grande desafio. Essa pesquisa objetivou desenvolver abordagens baseadas em Redes Neurais Artificiais (RNAs) para determinação da variação espacial e temporal do teor de água no solo, utilizando informações climáticas, propriedade físicas do solo e variáveis topográficas de uma bacia hidrográfica, com área aproximada de 78 km², localizada na Região Sul do Brasil (bacia do Taboão). A RNA adotada é uma rede de duas camadas, com 25 neurônios na camada intermediária, sendo o treinamento realizado por meio do algoritmo retropropagativo, considerando16 iterações iniciais dos pesos sinápticos, e número máximo de ciclos igual a 30.000. No total foram testadas 40 variáveis de entrada, sendo quatro referentes à topografia (altitude, declividade, distância do ponto ao trecho do rio mais próximo e desnível do ponto ao trecho mais próximo do rio); oito relacionadas ao solo (tipo de solo, densidade do solo, resistência à penetração no solo para as camadas de 0 a 20 cm e 20 a 40 cm, tensão da água no solo em apenas um ponto na bacia e percentual de argila, silte e areia), 10 relativas ao clima (clima, evapotranspiração de referência, temperatura do ar máxima e temperatura do ar, umidade relativa do ar máxima e umidade relativa do ar mínima, pressão atmosférica, radiação solar global, velocidade do vento e temperatura na relva), e 18 variáveis de chuva (chuva de 1, 2, 3, 4, 5, 6 e 12h; chuva de 1, 2, 3, 5, 10, 15, 20, 25 e 30 dias; chuva média ponderada horária; chuva média ponderada diária). A saída dos modelos foi comparada com valores de umidade gravimétrica determinados por amostras coletadas em 26 pontos da bacia, distribuídos espacialmente na bacia, no período compreendido entre 15/01 e 10/08/2013. Neste período o teor de água no solo (umidade gravimétrica) variou entre 13,73 e 33,75%. Os resultados demonstram que é possível estimar o teor de água no solo, com distribuição espacial e temporal, com boa eficiência (NSverificação = 0,77), empregando dados topográficos da bacia, propriedades físicas do solo e dados de chuva. As informações climáticas, por outro lado, não afetam significativamente essa estimativa (NSv=0,28), podendo até diminuir a eficiência do modelo (NSv=0,77 para NSv=0,68). O emprego de muitas variáveis não gera necessariamente o melhor desempenho do modelo, pois uma variável pode mascarar a outra e, até mesmo, interferir a eficiência do modelo (NSv=0,70 e NS=0,61 para os modelos onde foram utilizadas 38 variáveis de entrada), além de aumentar o custo e o tempo para aquisição dessas variáveis, e a dificuldade de interpretação dos resultados em relação às várias entradas. Alternativamente, pode-se estimar o teor de água no solo utilizando modelos mais simplificados que empregam dados de chuva monitorados e informações extraídas de mapas (topografia e tipo de solo), mas o desempenho desses modelos é menor (NSv 0,66). A análise de importância das variáveis de entrada delimitou a tensão da água no solo e a chuva como as variáveis mais influentes nos modelos de melhor desempenho, e a densidade do solo como a menos importante. Nos modelos mais simples, a variável menos relevante é a declividade e a mais importante é a chuva. A análise de sensibilidade demonstrou que nem sempre os modelos conseguem reproduzir o que deveria ocorrer no ambiente natural. / The water content in the soil is one of the determining factors in the transfer processes between the soil and the atmosphere, contributing to the balances of water and energy. This content is influenced by inputs to the basin, climate characteristics, topography, land cover characteristics, agricultural practices, and soil properties. These wide heterogeneity factors make the soil water content characterization still a challenge. This research aimed to develop an Artificial Neural Network (ANN) model to determine the spatial and temporal variation of the water content in the soil, using climate data, physical properties of soil, and topographic variables, of a basin with an area of approximately 78 km2, located in Brazil`s southern region (Taboão basin). The model adopted is a double layer feedforward neural network with 25 neurons in the hidden layer. The learning method is the back propagation algorithm, with 16 interactions to avoid local minima, and the maximum number of cycles chosen was 30,000. A total of 40 input variables were tested, including four of topography (altitude, slope, distance from the point to the nearest stretch of river and unevenness of the point closest to the stretch of the river), eight of soil related variables (soil type, soil density, soil penetration resistance for layers from 0 to 20 cm and from 20 to 40 cm, soil water tension at a single point in the basin and percentage of clay, silt and sand), 10 climate-related variables (climate, evapotranspiration reference, maximum and minimum air temperature, maximum and minimum air relative humidity, atmospheric pressure, global solar radiation, wind speed and temperature on grass) and 18 variables related to rain (accumulated precipitation in 1, 2, 3, 4, 5, 6 e 12h; accumulated precipitation in 2, 3, 5, 10, 15, 20, 25 and 30 days; weighted hourly accumulated precipitation; weighted daily accumulated precipitation). The outputs of the models were compared with values determined by gravimetric moisture samples collected from 26 points spatially distributed in the basin, in the period between 15/01 and 10/08/2013. During this period the soil water content (gravimetric water content) ranged from 13.73 to 33.75%. The results show that it is possible to estimate the water content of the soil, temporal and spatial distribution, with good efficiency (NSverication = 0.77), using topographic data from the basin, soil physical properties and precipitation data. The weather information, on the other hand, did not significantly affect the estimate (NSv = 0.28) and may even decrease the efficiency (NSv) of the model (from 0.77 to 0.68). The use of many variables not necessarily generates the best performance of the model as a variable may mask another and even disrupt the efficiency of the model (NSv = 0.70 and NSv = 0.61, where 38 input variables were used), besides increasing the cost and the time to acquire these variables, and the difficulty of interpreting the results in relation to the various inputs. Alternatively, one can estimate the water content in soil using more simplified models, employing monitored rainfall data and information extracted from maps (topography and soil type), but the performance of these models is smaller (NSv 0.66). The analysis of the importance of input variables delimited the soil water tension and the rain as the most influential variables in the best models, and the density of the soil as the least important. In the simplest models, the less relevant variable is the slope and the most important is the rain. The sensitivity analysis showed that the models cannot always play what should occur in the natural environment.
4

Estimativa do teor de água no solo em bacia hidrográfica com redes neurais artificiais utilizando fatores físicos e climáticos / Estimation of soil water content in watershed with artificial neural networks using physical factors and weather

Oliveira, Marquis Henrique Campos de January 2014 (has links)
O teor de água no solo é um dos fatores determinantes nos processos de transferência entre o solo e a atmosfera, contribuindo nos balanços de água e de energia. Esse teor é influenciado pelas entradas de água na bacia hidrográfica, por características climáticas, topográficas, de cobertura vegetal, práticas de manejo agrícola e propriedades do solo. A grande heterogeneidade desses fatores faz com que a caracterização desse teor seja ainda um grande desafio. Essa pesquisa objetivou desenvolver abordagens baseadas em Redes Neurais Artificiais (RNAs) para determinação da variação espacial e temporal do teor de água no solo, utilizando informações climáticas, propriedade físicas do solo e variáveis topográficas de uma bacia hidrográfica, com área aproximada de 78 km², localizada na Região Sul do Brasil (bacia do Taboão). A RNA adotada é uma rede de duas camadas, com 25 neurônios na camada intermediária, sendo o treinamento realizado por meio do algoritmo retropropagativo, considerando16 iterações iniciais dos pesos sinápticos, e número máximo de ciclos igual a 30.000. No total foram testadas 40 variáveis de entrada, sendo quatro referentes à topografia (altitude, declividade, distância do ponto ao trecho do rio mais próximo e desnível do ponto ao trecho mais próximo do rio); oito relacionadas ao solo (tipo de solo, densidade do solo, resistência à penetração no solo para as camadas de 0 a 20 cm e 20 a 40 cm, tensão da água no solo em apenas um ponto na bacia e percentual de argila, silte e areia), 10 relativas ao clima (clima, evapotranspiração de referência, temperatura do ar máxima e temperatura do ar, umidade relativa do ar máxima e umidade relativa do ar mínima, pressão atmosférica, radiação solar global, velocidade do vento e temperatura na relva), e 18 variáveis de chuva (chuva de 1, 2, 3, 4, 5, 6 e 12h; chuva de 1, 2, 3, 5, 10, 15, 20, 25 e 30 dias; chuva média ponderada horária; chuva média ponderada diária). A saída dos modelos foi comparada com valores de umidade gravimétrica determinados por amostras coletadas em 26 pontos da bacia, distribuídos espacialmente na bacia, no período compreendido entre 15/01 e 10/08/2013. Neste período o teor de água no solo (umidade gravimétrica) variou entre 13,73 e 33,75%. Os resultados demonstram que é possível estimar o teor de água no solo, com distribuição espacial e temporal, com boa eficiência (NSverificação = 0,77), empregando dados topográficos da bacia, propriedades físicas do solo e dados de chuva. As informações climáticas, por outro lado, não afetam significativamente essa estimativa (NSv=0,28), podendo até diminuir a eficiência do modelo (NSv=0,77 para NSv=0,68). O emprego de muitas variáveis não gera necessariamente o melhor desempenho do modelo, pois uma variável pode mascarar a outra e, até mesmo, interferir a eficiência do modelo (NSv=0,70 e NS=0,61 para os modelos onde foram utilizadas 38 variáveis de entrada), além de aumentar o custo e o tempo para aquisição dessas variáveis, e a dificuldade de interpretação dos resultados em relação às várias entradas. Alternativamente, pode-se estimar o teor de água no solo utilizando modelos mais simplificados que empregam dados de chuva monitorados e informações extraídas de mapas (topografia e tipo de solo), mas o desempenho desses modelos é menor (NSv 0,66). A análise de importância das variáveis de entrada delimitou a tensão da água no solo e a chuva como as variáveis mais influentes nos modelos de melhor desempenho, e a densidade do solo como a menos importante. Nos modelos mais simples, a variável menos relevante é a declividade e a mais importante é a chuva. A análise de sensibilidade demonstrou que nem sempre os modelos conseguem reproduzir o que deveria ocorrer no ambiente natural. / The water content in the soil is one of the determining factors in the transfer processes between the soil and the atmosphere, contributing to the balances of water and energy. This content is influenced by inputs to the basin, climate characteristics, topography, land cover characteristics, agricultural practices, and soil properties. These wide heterogeneity factors make the soil water content characterization still a challenge. This research aimed to develop an Artificial Neural Network (ANN) model to determine the spatial and temporal variation of the water content in the soil, using climate data, physical properties of soil, and topographic variables, of a basin with an area of approximately 78 km2, located in Brazil`s southern region (Taboão basin). The model adopted is a double layer feedforward neural network with 25 neurons in the hidden layer. The learning method is the back propagation algorithm, with 16 interactions to avoid local minima, and the maximum number of cycles chosen was 30,000. A total of 40 input variables were tested, including four of topography (altitude, slope, distance from the point to the nearest stretch of river and unevenness of the point closest to the stretch of the river), eight of soil related variables (soil type, soil density, soil penetration resistance for layers from 0 to 20 cm and from 20 to 40 cm, soil water tension at a single point in the basin and percentage of clay, silt and sand), 10 climate-related variables (climate, evapotranspiration reference, maximum and minimum air temperature, maximum and minimum air relative humidity, atmospheric pressure, global solar radiation, wind speed and temperature on grass) and 18 variables related to rain (accumulated precipitation in 1, 2, 3, 4, 5, 6 e 12h; accumulated precipitation in 2, 3, 5, 10, 15, 20, 25 and 30 days; weighted hourly accumulated precipitation; weighted daily accumulated precipitation). The outputs of the models were compared with values determined by gravimetric moisture samples collected from 26 points spatially distributed in the basin, in the period between 15/01 and 10/08/2013. During this period the soil water content (gravimetric water content) ranged from 13.73 to 33.75%. The results show that it is possible to estimate the water content of the soil, temporal and spatial distribution, with good efficiency (NSverication = 0.77), using topographic data from the basin, soil physical properties and precipitation data. The weather information, on the other hand, did not significantly affect the estimate (NSv = 0.28) and may even decrease the efficiency (NSv) of the model (from 0.77 to 0.68). The use of many variables not necessarily generates the best performance of the model as a variable may mask another and even disrupt the efficiency of the model (NSv = 0.70 and NSv = 0.61, where 38 input variables were used), besides increasing the cost and the time to acquire these variables, and the difficulty of interpreting the results in relation to the various inputs. Alternatively, one can estimate the water content in soil using more simplified models, employing monitored rainfall data and information extracted from maps (topography and soil type), but the performance of these models is smaller (NSv 0.66). The analysis of the importance of input variables delimited the soil water tension and the rain as the most influential variables in the best models, and the density of the soil as the least important. In the simplest models, the less relevant variable is the slope and the most important is the rain. The sensitivity analysis showed that the models cannot always play what should occur in the natural environment.

Page generated in 0.0827 seconds