• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experimental demonstration of a gravitational wave detector configuration below the shot noise limit

McKenzie, Kirk. January 2002 (has links)
Thesis (BSc. (Hons))--Australian National University, 2002. / Title from title screen (viewed July 31, 2002). Available via the Australian National University Library Electronic Pre and Post Print Repository.
2

Gravitational wave detection, detector characterization, and parameter estimation using a network of interferometer detectors

Rogan, Aaron Matthew, January 2006 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, December 2006. / Includes bibliographical references (p. 136-144).
3

Deployable stable lasers for gravitational wave interferometers.

Hosken, David John January 2009 (has links)
The most promising technique for the direct, ground-based detection of gravitational waves is the use of advanced interferometric gravitational wave detectors. These detectors use long-baseline Michelson interferometers, where the critical enabling component is the laser. The laser required for these interferometers must provide a low noise, single frequency, diffraction limited, high power TEM₀₀ beam. Very importantly, the laser beam must be available continuously and without the need for operator intervention. In this thesis I describe the development and characterisation of injection-locked 10 W Nd:YAG lasers, designed specifically for use at the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) High Power Test Facility (HPTF) in Western Australia, and on the Japanese TAMA 300 gravitational wave interferometer (GWI). The starting point was a 5 W laboratory laser that had demonstrated the proof-of-principle; however this laser had insufficient power, inadequate reliability, and was not suitable for deployment to a remote site. I describe the development of this laser technology and design to realise reliable, longterm operation and field deployability, while satisfying the requirements for a GWI, with the final laser system bearing little resemblance to the proof-of-principle system. Injection-locked lasers were successfully installed at the ACIGA HPTF and at TAMA 300 in June 2004 and September 2005 respectively. The 10 W laser uses a Nd:YAG Coplanar Pumped Folded Slab (CPFS) gain medium. The slab is side-pumped using a temperature controlled, fast-axis collimated, custom laser diode array, and conduction cooled in the orthogonal direction. Interferometry is used to measure the thermal lensing within the gain medium; these measurements are used to design a single-mode, travelling-wave slave resonator. The entire slave laser is temperature controlled and mounted on an integrated, air-cooled base. The thermal design is validated by extensive thermal testing. Long-term and robust injection-locking is achieved by using a servo system based on the Pound-Drever-Hall technique. I describe the development of a split feedback servo system to provide increased frequency stabilisation loop bandwidth and show that long-term injection-locking of the slave laser to a low power non-planar ring oscillator (NPRO) master laser produces a single frequency output at ~ 10 W with M²[subscript]x.y approx ≤ 1.1. Finally, the noise of the injection-locked laser is characterised. Relative intensity noise measurements demonstrate stability comparable to current GWI laser sources, while the results of a heterodyne beat measurement show that the 10 W injectionlocked laser output has frequency noise limited by the NPRO input. The laser installed at the ACIGA HPTF has been used to investigate the effects of increased intracavity laser powers on next-generation interferometers, with the laser described in this thesis being the key enabling component of this research. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1349763 / Thesis (Ph.D.) - University of Adelaide, School of Chemistry and Physics, 2009
4

Deployable stable lasers for gravitational wave interferometers.

Hosken, David John January 2009 (has links)
The most promising technique for the direct, ground-based detection of gravitational waves is the use of advanced interferometric gravitational wave detectors. These detectors use long-baseline Michelson interferometers, where the critical enabling component is the laser. The laser required for these interferometers must provide a low noise, single frequency, diffraction limited, high power TEM₀₀ beam. Very importantly, the laser beam must be available continuously and without the need for operator intervention. In this thesis I describe the development and characterisation of injection-locked 10 W Nd:YAG lasers, designed specifically for use at the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) High Power Test Facility (HPTF) in Western Australia, and on the Japanese TAMA 300 gravitational wave interferometer (GWI). The starting point was a 5 W laboratory laser that had demonstrated the proof-of-principle; however this laser had insufficient power, inadequate reliability, and was not suitable for deployment to a remote site. I describe the development of this laser technology and design to realise reliable, longterm operation and field deployability, while satisfying the requirements for a GWI, with the final laser system bearing little resemblance to the proof-of-principle system. Injection-locked lasers were successfully installed at the ACIGA HPTF and at TAMA 300 in June 2004 and September 2005 respectively. The 10 W laser uses a Nd:YAG Coplanar Pumped Folded Slab (CPFS) gain medium. The slab is side-pumped using a temperature controlled, fast-axis collimated, custom laser diode array, and conduction cooled in the orthogonal direction. Interferometry is used to measure the thermal lensing within the gain medium; these measurements are used to design a single-mode, travelling-wave slave resonator. The entire slave laser is temperature controlled and mounted on an integrated, air-cooled base. The thermal design is validated by extensive thermal testing. Long-term and robust injection-locking is achieved by using a servo system based on the Pound-Drever-Hall technique. I describe the development of a split feedback servo system to provide increased frequency stabilisation loop bandwidth and show that long-term injection-locking of the slave laser to a low power non-planar ring oscillator (NPRO) master laser produces a single frequency output at ~ 10 W with M²[subscript]x.y approx ≤ 1.1. Finally, the noise of the injection-locked laser is characterised. Relative intensity noise measurements demonstrate stability comparable to current GWI laser sources, while the results of a heterodyne beat measurement show that the 10 W injectionlocked laser output has frequency noise limited by the NPRO input. The laser installed at the ACIGA HPTF has been used to investigate the effects of increased intracavity laser powers on next-generation interferometers, with the laser described in this thesis being the key enabling component of this research. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1349763 / Thesis (Ph.D.) - University of Adelaide, School of Chemistry and Physics, 2009

Page generated in 0.1431 seconds