Spelling suggestions: "subject:"gravitationalwaves"" "subject:"gravitationalwave""
11 |
Characterisation of mechanical loss in fused silica ribbons for use in gravitational wave detector suspensionsHeptonstall, Alastair W. January 2004 (has links)
Thesis (Ph.D.) -- University of Glasgow, 2004. / Ph.D. thesis submitted to the Department of Physics and Astronomy, University of Glasgow, 2004. Includes bibliographical references (p. 205-215). Print version also available.
|
12 |
Characterizing astrophysical sources of gravitational wavesKey, Joey Shapiro. January 2010 (has links) (PDF)
Thesis (PhD)--Montana State University--Bozeman, 2010. / Typescript. Chairperson, Graduate Committee: Neil J. Cornish. Includes bibliographical references (leaves 117-125).
|
13 |
Gravitational wave detection, detector characterization, and parameter estimation using a network of interferometer detectorsRogan, Aaron Matthew, January 2006 (has links) (PDF)
Thesis (Ph. D.)--Washington State University, December 2006. / Includes bibliographical references (p. 136-144).
|
14 |
Detection, Data Analysis, and Astrophysics of Gravitational WavesCorley, Kenneth Rainer January 2020 (has links)
In this thesis, we present a series of methods, applications, and results on the subject of modern gravitational-wave astrophysics. This ranges from the detection of gravitational-wave phenomena to the analysis of detector data to applications of the measurements to astrophysics.
We first introduce the theory, detection, and sources of gravitational waves. We review the characterization of gravitational-wave detector data, and we present a method to identify detector artifacts in gravitational-wave data using only auxiliary detector data.
We then introduce two methods in gravitational-wave data analysis: first, we offer a method for searching detector data for unmodeled gravitational-wave events. Second, we present a method for the rapid estimation and communication of the inclination angle of compact binary mergers.
Finally, we explore three astrophysical applications of some the methods introduced: first, we show the effect of prior knowledge of inclination on the localization of binary black-hole mergers and its applications. Second, we explore the follow-up potential of the Cherenkov Telescope Array to gravitational-wave sources at high energies. Last, we show that publicly available gravitational-wave event information is capable of estimating the chirp masses of gravitational-wave sources, thereby identifying promising mergers for electromagnetic follow-up.
|
15 |
Multi-baseline gravitational wave radiometryTalukder, Dipongkar, January 2008 (has links) (PDF)
Thesis (M.S. in physics)--Washington State University, December 2008. / Title from PDF title page (viewed on June 19, 2009). "Department of Physics and Astronomy." Includes bibliographical references (p. 44-46).
|
16 |
Detecting continuous gravitational waves with superfluid 4HeSingh, S, Lorenzo, L A De, Pikovski, I, Schwab, K C 21 July 2017 (has links)
Direct detection of gravitational waves is opening a new window onto our universe. Here, we study the sensitivity to continuous-wave strain fields of a kg-scale optomechanical system formed by the acoustic motion of superfluid helium-4 parametrically coupled to a superconducting microwave cavity. This narrowband detection scheme can operate at very highQ-factors, while the resonant frequency is tunable through pressurization of the helium in the 0.1-1.5 kHz range. The detector can therefore be tuned to a variety of astrophysical sources and can remain sensitive to a particular source over a long period of time. For thermal noise limited sensitivity, we find that strain fields on the order of h similar to 10(-23)/root Hz are detectable. Measuring such strains is possible by implementing state of the art microwave transducer technology. Weshow that the proposed system can compete with interferometric detectors and potentially surpass the gravitational strain limits set by them for certain pulsar sources within a few months of integration time.
|
17 |
Deployable stable lasers for gravitational wave interferometers.Hosken, David John January 2009 (has links)
The most promising technique for the direct, ground-based detection of gravitational waves is the use of advanced interferometric gravitational wave detectors. These detectors use long-baseline Michelson interferometers, where the critical enabling component is the laser. The laser required for these interferometers must provide a low noise, single frequency, diffraction limited, high power TEM₀₀ beam. Very importantly, the laser beam must be available continuously and without the need for operator intervention. In this thesis I describe the development and characterisation of injection-locked 10 W Nd:YAG lasers, designed specifically for use at the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) High Power Test Facility (HPTF) in Western Australia, and on the Japanese TAMA 300 gravitational wave interferometer (GWI). The starting point was a 5 W laboratory laser that had demonstrated the proof-of-principle; however this laser had insufficient power, inadequate reliability, and was not suitable for deployment to a remote site. I describe the development of this laser technology and design to realise reliable, longterm operation and field deployability, while satisfying the requirements for a GWI, with the final laser system bearing little resemblance to the proof-of-principle system. Injection-locked lasers were successfully installed at the ACIGA HPTF and at TAMA 300 in June 2004 and September 2005 respectively. The 10 W laser uses a Nd:YAG Coplanar Pumped Folded Slab (CPFS) gain medium. The slab is side-pumped using a temperature controlled, fast-axis collimated, custom laser diode array, and conduction cooled in the orthogonal direction. Interferometry is used to measure the thermal lensing within the gain medium; these measurements are used to design a single-mode, travelling-wave slave resonator. The entire slave laser is temperature controlled and mounted on an integrated, air-cooled base. The thermal design is validated by extensive thermal testing. Long-term and robust injection-locking is achieved by using a servo system based on the Pound-Drever-Hall technique. I describe the development of a split feedback servo system to provide increased frequency stabilisation loop bandwidth and show that long-term injection-locking of the slave laser to a low power non-planar ring oscillator (NPRO) master laser produces a single frequency output at ~ 10 W with M²[subscript]x.y approx ≤ 1.1. Finally, the noise of the injection-locked laser is characterised. Relative intensity noise measurements demonstrate stability comparable to current GWI laser sources, while the results of a heterodyne beat measurement show that the 10 W injectionlocked laser output has frequency noise limited by the NPRO input. The laser installed at the ACIGA HPTF has been used to investigate the effects of increased intracavity laser powers on next-generation interferometers, with the laser described in this thesis being the key enabling component of this research. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1349763 / Thesis (Ph.D.) - University of Adelaide, School of Chemistry and Physics, 2009
|
18 |
Deployable stable lasers for gravitational wave interferometers.Hosken, David John January 2009 (has links)
The most promising technique for the direct, ground-based detection of gravitational waves is the use of advanced interferometric gravitational wave detectors. These detectors use long-baseline Michelson interferometers, where the critical enabling component is the laser. The laser required for these interferometers must provide a low noise, single frequency, diffraction limited, high power TEM₀₀ beam. Very importantly, the laser beam must be available continuously and without the need for operator intervention. In this thesis I describe the development and characterisation of injection-locked 10 W Nd:YAG lasers, designed specifically for use at the Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) High Power Test Facility (HPTF) in Western Australia, and on the Japanese TAMA 300 gravitational wave interferometer (GWI). The starting point was a 5 W laboratory laser that had demonstrated the proof-of-principle; however this laser had insufficient power, inadequate reliability, and was not suitable for deployment to a remote site. I describe the development of this laser technology and design to realise reliable, longterm operation and field deployability, while satisfying the requirements for a GWI, with the final laser system bearing little resemblance to the proof-of-principle system. Injection-locked lasers were successfully installed at the ACIGA HPTF and at TAMA 300 in June 2004 and September 2005 respectively. The 10 W laser uses a Nd:YAG Coplanar Pumped Folded Slab (CPFS) gain medium. The slab is side-pumped using a temperature controlled, fast-axis collimated, custom laser diode array, and conduction cooled in the orthogonal direction. Interferometry is used to measure the thermal lensing within the gain medium; these measurements are used to design a single-mode, travelling-wave slave resonator. The entire slave laser is temperature controlled and mounted on an integrated, air-cooled base. The thermal design is validated by extensive thermal testing. Long-term and robust injection-locking is achieved by using a servo system based on the Pound-Drever-Hall technique. I describe the development of a split feedback servo system to provide increased frequency stabilisation loop bandwidth and show that long-term injection-locking of the slave laser to a low power non-planar ring oscillator (NPRO) master laser produces a single frequency output at ~ 10 W with M²[subscript]x.y approx ≤ 1.1. Finally, the noise of the injection-locked laser is characterised. Relative intensity noise measurements demonstrate stability comparable to current GWI laser sources, while the results of a heterodyne beat measurement show that the 10 W injectionlocked laser output has frequency noise limited by the NPRO input. The laser installed at the ACIGA HPTF has been used to investigate the effects of increased intracavity laser powers on next-generation interferometers, with the laser described in this thesis being the key enabling component of this research. / http://proxy.library.adelaide.edu.au/login?url= http://library.adelaide.edu.au/cgi-bin/Pwebrecon.cgi?BBID=1349763 / Thesis (Ph.D.) - University of Adelaide, School of Chemistry and Physics, 2009
|
19 |
Bowen-type initial data for simulations of neutron stars in binary systemsClark, Michael C. 27 May 2016 (has links)
A new method for generating initial data for simulations of neutron stars in binary systems. The construction of physically relevant initial data is crucial to accurate assessment of gravitational wave signals relative to theoretical predictions. This method builds upon the Bowen-York curvature for puncture black holes. This data is evolved and compared against simulations in the literature with respect to orbital eccentricity, merger and collapse times, and emitted energy and angular momentum. The data exhibits some defects, including large central density oscillations in stars and center of mass drift in unequal-mass systems. Some approaches for improvements in potential future work are discussed.
|
20 |
Effects of massive fields on the early universeCespedes, Sebastian January 2019 (has links)
Cosmology is one of the best tools to understand the physics that governs the universe at high energies. On one hand, inflation is a very robust mechanism to explain the initial conditions of the universe. On the other hand general relativity provides a solid framework for the formation of cosmic structures at cosmological scales. Nevertheless, there are still important issues that remain without a clear answer. For example, inflation still lacks of a concrete microphysical description, and also there is still no satisfactory mechanism to explain the late time acceleration of the universe. This thesis addresses these two topics. In the first part we discuss the effects of heavy degrees of freedom coupled to inflation. This has been an important topic over the years, because the experimental success might make it possible to detect new degrees of freedom in inflation. In chapter two we discuss the case when non relativistic heavy fields are coupled to the inflaton through a non minimal gravitational coupling. Here we find that, for certain geometries, the heavy field can modify the potential for a few e-folds, either stopping inflation, or setting its initial conditions. In chapter 3 we study the dynamics of fluctuations in holographic inspired models of multi-field inflation. We find that the entropy mass $\mu$ (the mass of the fluctuation orthogonal to the trajectory of inflation) satisfies an universal upper bound given by $\mu \leq 3 H / 2$. This bound coincides with the requirement of unitarity of conformal operators living on the boundary of the theory. In the second part of the thesis we study high energy effects on the Cosmic Microwave Background (CMB). In the fourth chapter we study the role of disformal transformation on cosmological backgrounds and its relation to the speed of sound for tensor modes. A speed different from one for tensor modes can arise in several contexts such as Galileons theories, or massive gravity. Nevertheless the speed is very constrained to be one by observations of gravitational wave emission. It has been shown that in inflation a disformal transformation allows the speed for tensor modes, to be set to one without making changes to the curvature power spectrum. We show that on the CMB, after doing the transformation, there is an imprint on the acoustic peaks, and the diffusion damping. This has interesting consequences: for a particular class of theories the transformation can be used to constrain the parameter space in different regimes. In chapter five we study the impact of gravitons with non-vanishing masses on the polarisation of th CMB . We also focus on putative modifications to the speed of the gravitational waves. We find that a change of the graviton speed shifts the acoustic peaks of the B-mode polarization and then could be easily constrained. In all cases when both massless and massive gravitons are present, we find that the B-mode CMB spectrum is characterised by a low $l$ plateau together with a shifted position for the first few peaks compared to a massless graviton spectrum. This shift depends on the mixing between the gravitons in their coupling to matter and could serve as a hint in favour of the existence of multiple gravitons.
|
Page generated in 0.0905 seconds