• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hydrologic and water quality performance of bioretention cells during plant senescence

Dhami, Jessica 11 March 2022 (has links)
Bioretention cells (also known as rain gardens) are a Low Impact Development (LID) method for sustainable stormwater management. An increasingly popular form of urban stormwater infrastructure, bioretention cells use an engineered, vegetated-soil-system to both reduce quantity and enhance quality of stormwater. The ability of bioretention systems to remove common pollutants from urban stormwater runoff, and reduce runoff volume through evapotranspiration, in a temperature climate during plant senescence were assessed in this full scale field-based study. Stormwater run-off simulations were conducted for 5-, 10-, and 25-year return period storm events at a field site in Victoria, British Columbia, Canada. Tests were run on both, a vegetated cell planted with a mix of Betula nigra, Betula nana, and Salix lutea, and a control cell with turfgrass. Influent and effluent field parameters were recorded for pH and dissolved oxygen (DO), in addition to lab analyses conducted to quantify COD, TN, TON, TP, ortho-phosphate, and TSS removal from the stormwater. Water quality and hydrologic performance were results were compared between the vegetated and control cell using a Wilcoxon Signed Rank Test. In addition, hydrologic results were correlated with daily Evapotranspiration (ET) and meteorological station data using Spearman’s Rho Correlation. The vegetated cells were more effective (p value < 0.05) at retention of water volume, DO, COD, and orthophosphate, when compared to the control. Strong correlations (p value < 0.05) were found between the retention of water volume, and each of ET, maximum temperature, average temperature, minimum temperature, and average wind, for only the vegetated cells. / Graduate

Page generated in 0.0611 seconds