Spelling suggestions: "subject:"greenstone melts."" "subject:"greenstones melts.""
21 |
Gold mineralization in archaean cherts and iron-formations a review of the economic geologyBellamy, R E S January 1979 (has links)
The distribution of gold in igneous rocks and minerals is described and discussed. Not all the gold in igneous rocks is contained within early formed crystal lattices. Evidence that gold can be associated with late stage crystallizing phases is described. It is concluded that some of the gold in hydrothermal and volcanogenic deposits may have come from a primary magmatic source rather than having been leached from solid country rock. Gold is probably transported as chloride complexes at temperatures greater than about 300°C. At lower temperatures it is probably transported with other metals as sulphide and thio-sulphide complexes. The precipitation of gold from the transporting medium is brought about by changes in the physico-chemical conditions within that medium. Decrease in pressure is probably not a major cause of precipitation in volcanogenic environments. The geology of volcanogenic iron-formations is described and discussed, relative to the development of greenstone belts. Oxide facies iron-formations were formed in shallow oxidizing environments. They are associated with volcanogenic and clastic sediments. Sulphide facies iron-formations were precipitated in the deeper parts of geosynclinal structures. They are associated with mafic and ultramafic rocks similar to modern oceanic volcanic assemblages. Carbonate facies iron-formations were deposited in the regions between oxide facies and sulphide facies. Other banded iron-formations are found associated with base metal massive sulphide deposits related to arctype volcanic centres. These deposits are found in the regions where carbonate facies iron-formations were formed. Exploration for and exploitation of gold deposits in Archaean iron-formations are discussed. Geochemical exploration programmes are aided by the association of gold with trace amounts of base metals. Geophysical exploration methods that can be employed include magnetometer, I.P. and E.M. surveys. The metallurgical treatment of the ores should include "roasting" because a large proportion of the gold occurs as submicroscopic grains within sulphide mineral crystals.
|
22 |
Gold mineralization in an archaean granite-greenstone remnant west of Melmoth, Natal ore genesis and implications for explorationBullen, Warwick David January 1991 (has links)
The previously undifferentiated, "Melmoth Granite-Greenstone Remnant" (MGGR¹) crops out over an area of about 360 km² in northern Natal, South Africa. The greenstone sequence is comprised mainly of mafic metalavas with lesser serpentinite, talc schist, dacitic tuff, quartz-muscovite schist, quartzite and calc-silicate rocks. The greenstones are intruded by syntectonic trondhjemitic gneisses, late-tectonic granodioritic gneisses and post-tectonic granite dykes. Four phases of deformation and metamorphism are recognized. Epigenetic, disseminated and quartz vein-hosted gold mineralization is associated with D₂ shearing - a positive correlation existing between the intensity of the shearing, the thickness of the shear zone and the grade of ore it contains. Auriferous quartz veins are distinguished from an earlier generation of barren vein quartz on the basis of mineralogy, texture and relationship to the s-fabric. The mineralization occurs in zones of dilation associated with shear zone refraction. Associated wall rock alteration includes sericitization, argillization and chloritization. An ore genesis model based on the aforementioned parameters, is proposed. Finally, an exploration programme has been devised in order to locate undiscovered gold deposits in the MGGR. The programme could probably be applied, with minor modifications, to shear zone-hosted gold deposits in other granite-greenstone remnants in northern Natal. ¹- Name suggested by writer.
|
23 |
A Geochemical and Isotopic Investigation of Metasedimentary Rocks from the North Caribou Greenstone Belt, Western Superior Province, CanadaDuff, Jason January 2014 (has links)
The North Caribou Greenstone Belt (NCGB) lies at the core the granitoid-dominant North Caribou Terrane (NCT). Two sedimentary assemblages; the Eyapamikama (ELS) and Zeemal-Heaton Lake (ZHA) form the core of the NCGB.
Geochemistry of garnets from the orogenic Au deposit at Musselwhite suggest that the auriferous fluids have a contribution of metamorphic fluids and mineralization consisted of prolonged, multi-stage periods. Chemical zoning suggests changes in the influx of chalcophile and lithophile elements and that Au/sulphide ratios during nucleation were lower relative to later growth events.
Zircons from the ELS and ZHA suggest a c. 100 My hiatus in the onset of sedimentation, with the ZHA showing younger, “Timiskaming-type” ages. Age distributions from each assemblage reflect proximal, igneous sources. Nd isotopic compositions of the ZHA suggest a mixture of ancient and contemporaneous sources which are similar to external TTG rocks. Deplete mantle model ages of the ZHA rocks indicate a Mesoarchean inheritance.
|
24 |
Geologic evolution of the Archean Buhwa Greenstone Belt and surrounding granite-gneiss terrane, southcentral ZimbabweFedo, Christopher M. 06 June 2008 (has links)
The Archean (~3.0 Ga) Buhwa Greenstone Belt, and surrounding granite-gneiss terrane, is the least understood major greenstone belt in the Archean Zimbabwe Craton, despite occupying a critical position between an early Archean continental nucleus and the Limpopo Belt. The cover succession in the Buhwa Greenstone Belt, which was probably deposited on the margin of this nucleus, is divisible into shelfal and basinal facies associations separated by a transitional facies association. The shelfal association consists mostly of quartzarenite and shale, but also contains a thick succession of iron-formation. Geochemical characteristics of the shales indicate that the source terrane consisted of several lithologies including tonalite, mafic-ultramafic volcanic rocks, and granite that underwent intense chemical weathering. Basinal deposits consist dominantly of greenstones, with less abundant chert and ironformation. The cover succession, which was deposited on a stable shelf transitional to deep water, has no stratigraphic equivalents elsewhere on the Archean Zimbabwe Craton. However, time and lithologic correlatives in the central zone of the Limpopo The Archean (-3.0 Ga) Buhwa Greenstone Belt, and surrounding granite-gneiss terrane, is the least understood major greenstone belt in the Archean Zimbabwe Craton, despite occupying a critical position between an early Archean continental nucleus and the Limpopo Belt. The cover succession in the Buhwa Greenstone Belt, which was probably deposited on the margin of this nucleus, is divisible into shelfal and basinal facies associations separated by a transitional facies association. The shelfal association consists mostly of quartzarenite and shale, but also contains a thick succession of iron-formation. Geochemical characteristics of the shales indicate that the source terrane consisted of several lithologies including tonalite, mafic-ultramafic volcanic rocks, and granite that underwent intense chemical weathering. Basinal deposits consist dominantly of greenstones, with less abundant chert and ironformation. The cover succession, which was deposited on a stable shelf transitional to deep water, has no stratigraphic equivalents elsewhere on the Archean Zimbabwe Craton. However, time and lithologic correlatives in the central zone of the Limpopo ~2.9 Ga in southern Africa.
At ~2.9 Ga, the northern margin of the greenstone belt experienced kilometerscale, oblique-slip dextral shearing. This shear zone and the surrounding margins of the greenstone belt were later intruded by the ~2.9 Ga Chipinda batholith, which ranges from granitic to tonalitic in composition.
A number of events occurred during the time period spanning 2.9-2.5 Ga and current geochronology cannot separate their order; some are known to be coeval. Crustal shortening to the northwest, which resulted in map-scale folding of the cover succession (and surrounding batholith) and greenschist-facies metamorphism, occurred along a set of discrete high-angle reverse-sense shear zones in response to uplift the Northern Marginal Zone of the Limpopo Belt over the Zimbabwe Craton. Two suites of potassic granites were intruded into the area near the end of reverse shearing. Analysis of a conjugate fault pair that is developed within one of the potassic granite suites, yields a principal compressive stress consistent with continued northwest-directed crustal shortening. The region was stabilized by ~2.5 Ga, with intrusion of the Great Dyke of Zimbabwe. It is possible that the last events to affect the area, which include sinistral shearing, transecting cleavage development, and northwest-striking open folding, took place during the 2.9-2.5 Ga time intervaL These structures post-date regional folding and metamorphism, but because of limited magnitude and extent, do not show obvious cross-cutting relationships with other rocks or structures. A tenable alternative is that these late structures formed at ~2.0 Ga. an age that is proving to be of great significance in the evolution of the Limpopo Belt and along parts of the southern margin of the Zimbabwe Craton. / Ph. D.
|
25 |
Tectonostratigraphy, structure and metamorphism of the Archaean Ilangwe granite - greenstone belt south of Melmoth, Kwazulu-Natal.Mathe, Humphrey Lawrence Mbendeni. January 1997 (has links)
The mapped area, measuring about 400m2, is situated along the southern margin of the
Archaean Kaapvaal Craton south of Melmoth in KwaZulu-Natal and comprises greenstones
and metasediments forming a narrow, linear E-W trending and dominantly northerly
inclined belt flanked to the north and south by various granitoids and granitoid gneisses
which have been differentiated for the first time in this study. This belt is here referred to as
the ILANGWE GREENSTONE BELT.
The lIangwe Belt rocks are grouped into the Umhlathuze Subgroup (a lower metavolcanic
suite) and the Nkandla Subgroup (an upper metasedimentary suite). The former consists
of:
(a) the Sabiza Formation: a lower amphibolite association occurring along the
southern margin of the greenstone belt;
(b) the Matshansundu Formation: an eastern amphibolite-BIF association;
(c) the Olwenjini Formation: an upper or northern amphibolite-banded chert-BIF
association.
whereas the latter is sub-divided into:
(a) the Entembeni Formation: a distinctive phyllite-banded chert-BIF association
occurring in the central and the eastern parts of the belt;
(b) the Simbagwezi Formation: a phyllite-banded chert-amphibolite association
occurring in the western part of the belt, south-east of Nkandla;
(c) the Nomangci Formation: a dominantly quartzite and quartz schist formation
occurring in the western part of the belt, south-east of Nkandla.
The contacts between the six major tectonostratigraphic formations are tectonic.
In the eastern sector of the lIangwe Belt, the lowermost metasedimentary formation, the
Entembeni Formation, cuts across both the Sabiza and Matshansundu Formations (the
lower formations of the Umhlathuze Subgroup) in a major deformed angular unconformity
referred to as the Ndloziyana angular unconformity. In the central parts of the belt, the
Entembeni Formation structurally overlies the Olwenjini Formation in what seems to be a
major local unconformity (disconformity). In the western sector of the belt, the Simbagwezi
Formation occurs as a structural wedge between the lower and upper formations of the
Umhlathuze Subgroup. That is, it structurally overlies the Sabiza Formation and structurally
underlies the Olwenjini Formation. The uppermost metasedimentary unit, the Nomangci
Formation occurs as a complex series of finger-like wedges cutting and extending into the
Simbagwezi Formation and in each case showing that the Nomangci Formation structurally
underlies the Simbagwezi Formation. This structural repetition of lithological units is
suggestive of normal dip-slip duplex structures.
Palimpsest volcanic features, such as pillow structures and minor ocelli, indicate that many
of the amphibolitic rocks represent metavolcanics, possibly transformed oceanic crust. This
is also supported by limited major element geochemistry which suggests that the original
rocks were ocean tholeiites. Evidence suggests that the talc-tremolite schists and the
serpentinitic talc schists represent altered komatiites. The nature of the metasediments
(represented by banded metacherts, quartzites and banded iron formations) and their
similarity to those of the Barberton, Pietersburg and Nondweni greenstone complexes
suggests that they were formed in relatively shallow water environments.
The lIangwe magmatism is represented by different types of granitoids and granitoid
gneisses and basic-ultrabasic intrusive bodies. Based on similar geochemical and
mineralogical characteristics and on regional distribution, mutual associations and contact
relationships, these granitoids and granitoid gneisses can be divided into three broad
associations, viz:
(a) The Amazula Gneiss - Nkwa/ini Mylonitic Gneiss - Nkwalini Quartzofeldspathic
Flaser Gneiss Association: a migmatitic paragneiss and mylonitic to
flaser gneiss association of older gneisses of Nondweni age occurring in several
widely separated areas and intruded by younger granitoids.
(b) The early post-Nondweni Granitoids comprising the Nkwalinye Tonalitic
Gneiss (a distinctive grey gneiss intrusive into the greenstones and older
gneisses) and the Nsengeni Granitoid Suite (an association of three granitoid
units of batholithic proportions flanking the greenstone belt and intrusive into the
greenstones, older gneisses and Nkwalinye Tonalitic Gneiss).
(c) The late post-Nondweni Granitoids comprising the Impisi-Umgabhi Granitoid
Suite, a batholithic microcrystic to megacrystic association of five granitoid
phases/units occurring to the north and south of the greenstone belt and intrusive
into the greenstones, older gneisses and early post-Nondweni granitoids.
Limited major element geochemistry suggests that the granitoids and granitoid gneisses
are of calc-alkaline origin and are of tonalitic, granodioritic, adamellitic and granitic
composition. An igneous derivation from material located possibly at the lower crust or
upper mantle is suggested.
At least three major episodes of deformation (01, O2 and 03) have been recognized in the
greenstones. During 01, a strong penetrative S1 tectonic foliation developed parallel to the
So primary layering and bedding. This period was characterized by intense transpositional
layering, recumbent and isoclinal intrafolial folding with associated shearing,thrusting and
structural repetition of greenstone lithologies. These processes took place in an essentially
horizontal, high strain tectonic regime.
The first phase of deformation (OG1) in the migmatitic and mylonitic gneisses was also
characterized by recumbent and isoclinal intrafolial folding and is remarkably similar to the
01deformational phase in the lIangwe greenstones.
Structural features of the first phase of deformation suggest that it was dominated by
formation of fold nappes and thrusts and was accompanied by prograde M1 medium-grade
middle to upper amphibolite facies metamorphism.
During D2 deformation, the subhorizontal D1 structures were refolded by new structures with
steeply inclined axial planes. This resulted in the formation of superimposed Type 3
interference folding in the amphibolitic rocks and large-scale, E-W trending, doublyplunging
periclinal folds in the metasediments. These periclinal folds have steeply inclined
and overturned limbs and are characterized by narrow, closed elliptical outcrop patterns
well-defined by extensive banded ironstones and metacherts.
The second phase of deformation in the granitoids (DG
2) was characterized by steeply
plunging and steeply inclined small-scale tight to isoclinal similar folds. Large-scale folds
are not present in the granitoids.
Evidence suggests that the second phase of deformation was a major compressional event
which resulted in the large-scale upright, flattened flexural folds. It was accompanied by
widespread regional greenschist metamorphism and the intrusion of the early postNondweni
granitoids.
The third phase of deformation produced steeply plunging small-scale folds on the limbs
and axial planes of the pre-existing large-scale F2 folds and upright open folds in the
granitoid terrain. This episode was characterized by the emplacement of the late postNondweni
granitoids (along the D2 greenstone boundary faults) and is associated with two
significant events of prograde M3 upper greenschist facies metamorphism and retrograde
M3 lower greenschist facies metamorphism.
Post-D3 deformation is characterized by late cross-cutting faults and the emplacement of
younger basic - ultrabasic bodies. / Thesis (Ph.D.)-University of Natal, 1997.
|
26 |
Analyse quantitative de la distribution spatiale de la fracturation et de la minéralisation dans les zones de cisaillement : applications aux gisements du complexe du lac Dore (Chicougamau - Québec) /Tavchandjian, Olivier. January 1992 (has links)
Thèse (D.R.Min.) -- Université du Québec à Chicoutimi, 1992. / Document électronique également accessible en format PDF. CaQCU
|
27 |
Modifications structurales du dépôt de sulfures massifs archéen de Grevet, région de Lebel-sur-Quevillon /Lacroix, Jean, January 1992 (has links)
Mémoire (M.Sc.T.)-- Université du Québec à Chicoutimi, 1992. / Bibliogr.: f. 68-73. Document électronique également accessible en format PDF. CaQCU
|
28 |
Étude de la géométrie et des mouvements de la faille de Doda (sous-province de l'Abitibi) /Goghrod, Hamid, January 1993 (has links)
Mémoire (M.Sc.T.)-- Université du Québec à Chicoutimi, 1993. / Document électronique également accessible en format PDF. CaQCU
|
29 |
Étude volcano-sédimentaire de la zone de transition sommitale du Groupe de Hunter Mine et de la partie basale du Groupe de Stoughton-Roquemaure, Abitibi, Québec /Caron, Kathia, January 2000 (has links)
Mémoire (M.Sc.T.)--université du Québec à Chicoutimi, 2000. / Document électronique également accessible en format PDF. CaQCU
|
30 |
The tectono-metamorphic evolution of a portion of the Rhenosterkoppies Greenstone Belt, in relation to the Limpopo Orogeny, South AfricaRuygrok, Mario 26 May 2014 (has links)
M.Sc. (Geology) / Please refer to full text to view abstract
|
Page generated in 0.0792 seconds