• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development and validation of a collagen-based scaffold for vascular tissue engineering

Habermehl, Jason 11 April 2018 (has links)
L’ingénierie tissulaire est une approche qui vise à combler le besoin de remplacements d’organes. Ceci est d’autant plus vrai pour les artères, dont le besoin de remplacements résulte en partie de la prévalence des maladies cardiovasculaires dans le monde industrialisé. Pour ce faire, nous croyons qu’une des alternatives les plus prometteuse implique l’utilisation d’une structure permettant l’échafaudage tridimensionnel de cellules lors de la régénération. Le collagène possède plusieurs caractéristiques qui font en sorte qu’il peut être un matériau convenable à la fabrication de cette structure. Au cours de ce projet, un procédé d’extraction et de mise en solution de collagène type I à partir de queues de rat a été choisi et validé. Ce collagène a été caractérisé par rapport à ses propriétés moléculaires et ses performances mécaniques, biologiques et hématologiques. Suivant cette validation, une méthode pour produire des gels en forme de disques et de tubes ensemencés de cellules vasculaires a été élaborée. Ces structures ont été caractérisées quant à la viabilité des cellules dans le gel, la capacité des gels à être manipulés ainsi qu‘à leurs propriétés hématologiques, en milieu humide. Ce projet constitue une base pour des recherches futures visant à améliorer la fonctionnalité et les propriétés structurales des artères régénérées à base de collagène. / Tissue engineering provides insight into solving the organ shortage. This is especially the case for small diameter vascular substitutes, with which a shortage is due in part to the prevalence of cardiovascular disease in the industrialized world. For this, in our opinion, one of the most appropriate approaches involves using a structure to guide the cells during the regeneration phase. Collagen has many characteristics that make it suitable as a scaffold material for vascular tissue engineering. Two slightly different methods for extracting and processing collagen type I from rat tail were compared with respect to the molecular structure of the collagen molecule, the mechanical properties of thin films obtained from solvent evaporation and preliminary cellular viability with fibroblasts seeded on these same collagen films. One of the above methods was chosen and this collagen was then characterized with respect to cellular viability with smooth muscle cells and endothelial cells and also with blood contact assays. A method for producing three-dimensional gels seeded with vascular cells was developed. Cell distribution and viability, preliminary compliance testing and blood contact assays were performed on these gels. This project has provided the basis for further studies in order to maximize cell functionality and the structural properties required for implantation of collagen-gel-based vascular grafts.
2

Développement de prothèses artérielles favorisant l'endothélialisation

Boivin, Marie-Claude 19 April 2018 (has links)
Les maladies cardiovasculaires sont Lune des premières causes de mortalité en Amérique du Nord et est principalement due au vieillissement de la population. Il a été noté que 23 % de la population nord-américaine âgée de plus de 60 ans souffre d'une de ces maladies. Plusieurs remèdes permettant de remédier à ces maladies existent, dans un premier temps la prise de médicaments. Lorsque ces derniers ne sont plus efficaces, l'angioplastie ainsi que la pose de stents sont utilisées. Lorsque les fonctions de l'artère sont trop affectées, empêchant la circulation adéquate du sang, le remplacement de celleci par une prothèse est alors nécessaire. Malgré un taux de succès élevé pour les prothèses de plus de 6 mm de diamètre, le taux d'échec dans les 10 ans suivant l'implantation d'une prothèse en Téflon de moins de 6 mm de diamètre reste néanmoins de 66 %. Ce phénomène s'explique par la formation de thrombose et l'hyperplasie intimale. L'approche développée dans ce travail consistait donc à modifier la surface de ce polymère afin de favoriser la croissance des cellules endothéliales. En effet, sachant que ces cellules recouvrent naturellement la paroi des vaisseaux sanguins biologiques elles constituraient ainsi la surface hémocompatible par excellence. La stratégie développée au laboratoire était de conjuguer un peptide d'adhésion (RGD) et un peptide de prolifération (WQPPRARI) à la surface du polymère. Ces deux peptides ont été greffés suivant un modèle de patron en tirant profit des techniques d'impression et de pulvérisation développées au laboratoire. Dans le cadre de ce projet, le système de pulvérisation a été modifié, dans un premier temps, afin de traiter une plus grande superficie de surface car les tests biologiques nécessitaient des surfaces de 7 x 9 cm. La technologie consistait à pulvériser une solution de peptide RGD sous forme de gouttelettes de 10 um de diamètre avec un recouvrement de surface de 20 %, la surface non traitée était par la suite trempée dans la seconde solution peptidique soit : WQPPRARI. Une table x, y a été ajoutée au montage permettant ainsi de traiter uniformément de plus grandes surfaces. Les surfaces ainsi obtenues ont été évaluées quant à leur potentiel à promouvoir l'adhésion et la prolifération des cellules endothéliales humaines extraites de veines saphènes (HSVEC). Les expériences ont été effectuées in vitro autant en mode statique qu'en mode dynamique, afin de reproduire le plus possible les conditions d'un flux sanguin. Dans le cadre des études en mode statique, il a été observé que la présence de patron à la surface ne conduisait pas à une meilleure adhésion des cellules. Par contre, lors des tests en prolifération, il a clairement été démontré que le patron peptidique influençait la croissance cellulaire. Pour ce qui est des études en mode dynamique, l'attachement et la réorientation des cellules ont été observés. Une meilleure adhésion et une réorganisation cellulaire a été observée sur les surfaces patronnées. La micro structuration des surfaces de téflon avec les peptides RGD et WQPPRARI favorise donc une meilleure endothélialisation.

Page generated in 0.0504 seconds