Spelling suggestions: "subject:"grosspitaevskii equations."" "subject:"pitaevskii equations.""
1 |
A numerical study of the spectrum of the nonlinear Schrödinger equation /Olivier, Carel Petrus. January 2008 (has links)
Thesis (MSc)--University of Stellenbosch, 2008. / Bibliography. Also available via the Internet.
|
2 |
Generalized inverse scattering transform for the nonlinear schrödinger equationBusse, Theresa Nicole. January 2008 (has links)
Thesis ( Ph.D. ) -- University of Texas at Arlington, 2008.
|
3 |
A numerical study of the spectrum of the nonlinear Schrodinger equationOlivier, Carel Petrus 12 1900 (has links)
Thesis (MSc (Mathematical Sciences. Applied Mathematics))--Stellenbosch University, 2008. / The NLS is a universal equation of the class of nonlinear integrable systems. The
aim of this thesis is to study the NLS numerically. More speci cally, an algorithm is
developed to calculate its nonlinear spectrum. The nonlinear spectrum is then used
as a diagnostic for numerical studies of the NLS. The spectrum consists of a discrete
part, further subdivided into the main part, the auxiliary part, and the continuous
spectrum. Two algorithms are developed for calculating the main spectrum. One is
based on Floquet theory, rst implemented by Overman [12]. The other is a direct
calculation of the eigenvalues by Herbst and Weideman [16]. These algorithms
are combined through the marching squares algorithm to calculate the continuous
spectrum. All ideas are illustrated by numerical examples.
|
4 |
Local absorbing boundary conditions for wave propagationsLi, Hongwei 01 January 2012 (has links)
No description available.
|
5 |
Dinâmica e estabilidade de condensados de Bose-Einstein em redes ópticas lineares e não-lineares / Dynamics and stability of Bose-Einstein condenseds in linear and nonlinear optical catticesLuz, Hedhio Luiz Francisco da 26 April 2013 (has links)
Nessa tese, o objetivo principal foi verificar a estabilidade de sistemas atômicos condensados, sujeitos a diferentes combinações lineares e não-lineares de redes ópticas bie tridimensionais, considerando algumas situações simétricas e assimétricas. Com esse objetivo, foram realizadas análises variacionais e simulações numéricas exatas da equação não-linear correspondente que descreve sistemas condensados de Bose-Einstein, tipo-Schrödinger, mais conhecida como equação de Gross-Pitaevskii. No caso bidimensional, com redes ópticas cruzadas, linear e não-linear, foi verificada a existência de estabilidade para certas regiões de parâmetros das interações. Observou-se que essa estabilidade desaparece ao se incluir uma terceira dimensão sem a presença de um potencial de confinamento. No caso tridimensional, considerando redes ópticas lineares e não-lineares cruzadas, a estabilidade só ocorre quando consideramos uma interação confinante na terceira dimensão, no caso, uma segunda rede óptica linear. Finalmente, espera-se que nossos resultados venham a ser úteis para estudos experimentais que vêm sendo feitos em laboratórios de átomos ultra-frios. / In this thesis, the main objective was the verification of stability of condensed atomic systems, subject to different combinations of linear and nonlinear bi- and tridimensional optical lattices , considering some symmetric and asymmetric situations. With this objective, were performed variational analyzes and numerical exact simulations of the nonlinear Schrödinger-type equation that describes Bose-Einstein condensate systems, better known as Gross-Pitaevskii equation. In two-dimensional case, with a crossed linear and nonlinear optical lattice, the stability was confirmed for certain parameter regions of the interactions. It was observed that the stability disappears when including a third dimension without the presence of a confinement potential. In the three dimensional case, considering crossed linear and nonlinear optical lattices, stability occurs only when considering an interaction confining the third dimension, in this case a second linear optical lattice. Finally, it is expected that our results will be useful for experimental studies which have been done in the laboratories of ultra-cold atoms. Keywords:
|
6 |
Dinâmica e estabilidade de condensados de Bose-Einstein em redes ópticas lineares e não-lineares / Dynamics and stability of Bose-Einstein condenseds in linear and nonlinear optical catticesHedhio Luiz Francisco da Luz 26 April 2013 (has links)
Nessa tese, o objetivo principal foi verificar a estabilidade de sistemas atômicos condensados, sujeitos a diferentes combinações lineares e não-lineares de redes ópticas bie tridimensionais, considerando algumas situações simétricas e assimétricas. Com esse objetivo, foram realizadas análises variacionais e simulações numéricas exatas da equação não-linear correspondente que descreve sistemas condensados de Bose-Einstein, tipo-Schrödinger, mais conhecida como equação de Gross-Pitaevskii. No caso bidimensional, com redes ópticas cruzadas, linear e não-linear, foi verificada a existência de estabilidade para certas regiões de parâmetros das interações. Observou-se que essa estabilidade desaparece ao se incluir uma terceira dimensão sem a presença de um potencial de confinamento. No caso tridimensional, considerando redes ópticas lineares e não-lineares cruzadas, a estabilidade só ocorre quando consideramos uma interação confinante na terceira dimensão, no caso, uma segunda rede óptica linear. Finalmente, espera-se que nossos resultados venham a ser úteis para estudos experimentais que vêm sendo feitos em laboratórios de átomos ultra-frios. / In this thesis, the main objective was the verification of stability of condensed atomic systems, subject to different combinations of linear and nonlinear bi- and tridimensional optical lattices , considering some symmetric and asymmetric situations. With this objective, were performed variational analyzes and numerical exact simulations of the nonlinear Schrödinger-type equation that describes Bose-Einstein condensate systems, better known as Gross-Pitaevskii equation. In two-dimensional case, with a crossed linear and nonlinear optical lattice, the stability was confirmed for certain parameter regions of the interactions. It was observed that the stability disappears when including a third dimension without the presence of a confinement potential. In the three dimensional case, considering crossed linear and nonlinear optical lattices, stability occurs only when considering an interaction confining the third dimension, in this case a second linear optical lattice. Finally, it is expected that our results will be useful for experimental studies which have been done in the laboratories of ultra-cold atoms. Keywords:
|
Page generated in 0.0976 seconds